
Specifying and Enforcing Application-Level
Web Security Policies

David Scott and Richard Sharp

Abstract—Application-level Web security refers to vulnerabilities inherent in the code of a Web-application itself (irrespective of the

technologies in which it is implemented or the security of the Web-server/back-end database on which it is built). In the last few

months, application-level vulnerabilities have been exploited with serious consequences: Hackers have tricked e-commerce sites into

shipping goods for no charge, usernames and passwords have been harvested, and confidential information (such as addresses and

credit-card numbers) has been leaked. In this paper, we investigate new tools and techniques which address the problem of

application-level Web security. We 1) describe a scalable structuring mechanism facilitating the abstraction of security policies from

large Web-applications developed in heterogeneous multiplatform environments; 2) present a set of tools which assist programmers in

developing secure applications which are resilient to a wide range of common attacks; and 3) report results and experience arising

from our implementation of these techniques.

Index Terms—Application-level Web security, security policy description languages, component-based design.

æ

1 INTRODUCTION

ON 25 January 2001, an article appeared in a respected
British newspaper entitled Security Hole Threatens British

E-tailers [1]. The article described how a journalist hacked a
number of e-commerce sites, successfully buying goods for
less than their intended prices. The attacks resulted in a
number of purchases being made for 10 pence each,
including an Internet domain name (ivehadyou.org.uk), a
“Wales Direct” calendar, and tickets for a Jimmy Nail pop
concert.1 The author of the article rightly observes that the
process “requires no particular technical skill”; the attack
merely involves saving the HTML form to disk, modifying
the price (stored in a hidden form field) using a text editor,
and reloading the HTML form back into the browser. A
recent survey article published in ZD-Net [2] suggests that
between 30 and 40 percent of e-commerce sites throughout
the world are vulnerable to this simple attack. Internet
Security Systems (ISS) identified 11 widely deployed
commercial shopping-cart applications which suffer from
the vulnerability [3].

The price-changing attack is a consequence of an
application-level security hole. We use the term application-
level Web security to refer to vulnerabilities inherent in the
code of a Web-application itself (irrespective of the
technology in which it is implemented or the security of
the Web-server/back-end database/operating-system on
which it is built). Most application-level security holes arise
because Web applications mistakenly trust data returned

from a client. For example, in the price-changing attack
above, the Web application makes the invalid assumption
that a user cannot modify the price because it is stored in a
hidden field.

Application-level security vulnerabilities are well-known
and many articles have been published advising developers
on how they can be avoided [4], [5], [6]. Fixing a single
occurrence of a vulnerability is usually easy. However, the
massive number of interactions between different compo-
nents of a dynamic Web site makes application-level
security challenging in general. Despite numerous efforts
to tighten application-level security through code-review
and other software-engineering practices [7], the fact
remains that a large number of professionally designed
Web sites still suffer from serious application-level security
holes. This evidence suggests that higher-level tools and
techniques are required to address the problem.

In this paper, we present a structuring technique which
helps designers abstract security policies from large Web
applications. Our system consists of a specialized Security-
Policy Description Language (SPDL-2), which is used to
program an application-level firewall (referred to as a
security gateway). Security policies are written in SPDL-2 and
compiled for execution on the security gateway. The
security gateway dynamically analyzes and transforms
HTTP requests/responses to enforce the specified policy.
We call our Security-Policy Description Language SPDL-2
because it extends the language SPDL, which we defined in
previous work [8].

The remainder of the paper is structured as follows:
Section 2 briefly surveys a number of application-level
attacks and discusses some of the reasons why application-
level vulnerabilities are so prevalent in practice. In Section 3,
we describe the technical details of our system for
abstracting application-level Web security. Our methodol-
ogy is illustrated with an extended example in Section 4.
We have implemented the techniques discussed in this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003 771

. D. Scott is with the Laboratory for Communication Engineering, William
Gates Building, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK.
E-mail: djs55@eng.cam.ac.uk.

. R. Sharp is with Intel Research, William Gates Building, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, UK. E-mail: richard.sharp@intel.com.

Manuscript received 15 July 2002; revised 15 Dec. 2002; accepted 6 Jan. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 118230.

1. Some readers may argue that 10p is the true value of tickets to such a
concert. A full discussion of this topic is outside the scope of this paper.

1041-4347/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

paper. The performance of our implementation is evaluated
in Section 5. Related work is discussed in Section 6; finally,
Section 7 concludes.

2 APPLICATION-LEVEL SECURITY

We start by briefly categorizing and surveying a number of
common application-level attacks. We make no claims
regarding the completeness of this survey; the vulnerabil-
ities highlighted here are a selection of those which we feel
are particularly important. A more detailed survey may be
found in previous work [8].

2.1 Form Modification

HTML forms are a common source of application-level
security problems. The main contributing factor is that Web
designers implicitly trust validation rules which are
enforced only on the client-side. Even a relatively unskilled
attacker is able to save a form to disk and then change or
remove the validation constraints. Clearly, client-side
validation must never be trusted and all user input must
always be revalidated on the server-side.

2.2 SQL Attacks

Web applications commonly use data read from a client to
construct SQL queries. Unfortunately, constructing the
query naively leads to a vulnerability where the user can
execute arbitrary SQL against the back-end database. The
vulnerability is present because certain input characters
have special meaning in SQL (for example, ’ and ;). To
prevent these attacks from happening, all user input must
be properly escaped before being sent to a back-end
database.

2.3 Cross-Site Scripting

Cross-Site Scripting (XSS) refers to a range of attacks in
which users submit malicious HTML (possibly including
scripts—e.g., JavaScript) to dynamic Web applications. The
malicious HTML may be embedded inside URL para-
meters, form fields, or cookies. When other users view the
malicious content, it appears to come from the dynamic
Web site itself, a trusted source. The implications of XSS are
severe; for example, the Same Origin Policy, a key part of
JavaScript’s security model [9], is subverted.

2.4 Motivation and Contributions

In this section, we discuss a number of factors which
contribute to the prevalence of application-level security
vulnerabilities. We believe that each of the problems listed
below points to the same solution: The security policy
should be applied at a higher-level, removing security-
related responsibilities from coders whenever possible.

A major cause of application-level security vulnerabil-
ities is a general lack of language-level support in popular
untyped scripting languages. For example, consider the
languages PHP [10] and VB-Script [11]. When using these
languages, it is the job of the programmer to manually
verify that all user input is appropriately HTML-encoded.
Inadvertently omitting a call to the HTML-encoding
function results in a vulnerability being introduced. For
large applications written in such languages, it is inevitable

that a few such vulnerabilities will creep in. (Note that some
technologies provide greater language-level support in this
respect: When using typed languages, such as Java, the
type-system can be employed to statically verify that all
user input has been passed through an HTML-encoding
function; Perl’s taint mode offers similar guarantees but
through runtime checks rather than compile-time analysis.)

If Web applications were written in a single program-
ming language by a small number of developers, then one
could separate the security policy from the main body of
code by abstracting security-related library functions
behind a clean API. However, in reality, large Web
applications often consist of a large number of interacting
components written in different programming languages by
separate teams of developers. To complicate the situation
further, some of these components may be bought from
third-party developers (possibly in binary form). In such an
environment, it is difficult to abstract common code-blocks
into libraries. The inevitable consequence is that security-
critical code is scattered throughout the application in an
unstructured way. This lack of structure makes fixing
vulnerabilities difficult: The same security hole may have to
be fixed several times throughout the application.

Another major issue, albeit a nontechnical one, is a lack
of concern for security in the Web development community.
Although we realize that this is a generalization, evidence
suggests that factors such as time-to-market, graphic de-
sign, and usability are generally considered higher priority
than application-level security. We recently talked with
some Web-developers working for a large telecommunica-
tions company;2 they were surprised to hear of the attacks
outlined in Section 2 and had taken no steps to protect
against them.

In this paper, we present tools and techniques which
protect Web sites from application-level attacks. While we
recognize that our proposed methodology is not a panacea,
we claim that it does help to protect against a wide-range of
common vulnerabilities.

3 TECHNICAL DETAILS

Our system consists of a number of components:

1. A security policy description language (SPDL-2) is used
to specify a set of validation constraints and
transformation rules.

2. A security policy creation tool assists the policy
developer with the task of creating the security
policy.

3. A policy compiler automatically translates the SPDL-2
into server-side (and, optionally, client-side) code for
dynamically enforcing the policy.

4. An application-level security gateway is positioned
between the Web-server and client machines and
filters all the HTTP messages passing between them.

Fig. 1 shows a diagrammatic view of the components of
our system and the interactions between them. Note that
the security gateway does not have to run on a dedicated
machine: It can run as a separate process on the existing

772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

2. We hasten to add that this was not our sponsors, AT&T!

Web-server or, to achieve better performance, integrated
into the Web-server directly.

3.1 System Overview

With assistance from the security policy creation tool, the
designer codes a set of validation constraints and transformation
rules in SPDL-2. Validation constraints place restrictions on
data in cookies, URL parameters, and forms. For example,
typical constraints include “the value of this cookie must be
an integer between 1 and 3” and “the value of this (hidden)
form field must never be modified.” The transformation rules
of an SPDL-2 specification allow a programmer to specify
various transformations on user-input. The kind of transfor-
mations which may be specified are “pass data from all fields
on form f through an HTML-encoding function” or “escape
all single and double quotes in text submitted via this URL
parameter.” A summary of SPDL-2 is given in Section 3.2.

The policy compiler translates SPDL-2 into code which
checks validation rules and applies the specified transforma-
tions. The generated code is dynamically loaded into the
security gateway where it is executed in order to enforce the
specified policy. The security gateway acts as an application-

level firewall; its job is to intercept, analyze, and transform
whole HTTP messages (see Section 3.5). As well as checking
HTTP requests, the security gateway also rewrites the HTML
in HTTP responses, annotating it with Message Authentica-
tion Codes (MACs) [12] to protect state which may have been
maliciously modified by clients (see Section 3.6.2).

Although performing validation checks on the server-
side is sufficient for security purposes, user-interface issues
sometimes require validation rules to be applied on the
client-side. For example, Web-forms often use JavaScript for
client-side validation to reduce the observed latency
between form submission and receiving validation errors.
To address this need, the policy compiler offers the option
of generating JavaScript directly from the validation rules of
the SPDL-2 specification. The security gateway analyzes
forms as they are sent to the client, automatically inserting
JavaScript validation rules where appropriate. Since both

client-side and server-side validation code is derived from a
single specification, designers only have to write the
security policy once. Even if the client-side JavaScript is
subverted, there are still server-side checks in place.

Note that the reason we insert JavaScript into forms
dynamically (rather than inserting it statically into files in
the Web repository) is that many applications use server-
side code to generate forms on-the-fly. Although there is
scope for analysis of Web scripting languages to insert
validation code statically, this is a topic for future work.

3.2 Security Policy Description Language Version 2

At the top level, an SPDL-2 specification is an XML
document. The DTD corresponding to SPDL-2 is shown in
Fig. 2. The document consists of a single <site> element
which in turn contains a collection of <policy> elements.
Each <policy> element contains a group of related <URL>

and <cookie> elements and optionally <parameter> and
further nested <policy> elements.

For each <URL> element, a number of <parameter>s
are declared. The attributes of a <parameter> element
with name ¼ p place constraints on data passed via p:

. The maxlength and minlength attributes specify
the maximum and minimum length of data passed
via p.

. A setting required to “Y” specifies that p must
always contain a (nonzero length) value.

. Setting MAC to “Y” specifies that the value of p must
be accompanied by a Message Authentication Code
(MAC) [12] generated by the server. This prevents
the user from changing the value of the parameter to
arbitrary values (see Section 3.6.2).

. The type attribute specifies the data-type of p
(either int, float, bool, or string).

The method attribute determines whether the speci-
fied constraints apply to p passed as a GET-parameter
(i.e., a URL argument) or a POST-parameter (i.e.,
returned from a form). Setting method to GETandPOST

means that the constraints within the <parameter>

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 773

Fig. 1. A diagrammatic view of our system for abstracting application-level Web security.

element are applicable to both GET and POST para-

meters with name ¼ p. (The GETandPOST option is

particularly useful if parts of a Web-application are

written in a language which does not force a distinction

between GET and POST parameters with the same

name—e.g., PHP.)
For example, consider the following policy fragment:

<policy name=“example” description=“...”>

<URL prefix=“http://example”>

<parameter name=“p1” maxlength=“4”

type=“int” required=“Y”

MAC=“N” />

<parameter name=“p2” method=“POST”

maxlength=“3” type=“string” />

</URL>

</policy>

This example specifies constraints on parameters passed
to URLs with prefix “http://example.” The first
<parameter> element defines constraints to be applied
to a parameter named p1 (either GET or POST); the
second <parameter> element defines constraints to be
applied to a POST parameter named p2. A larger example
of a policy definition can be found in the case study of
Section 4. The case study explicitly demonstrates how
policies can be nested within each other in order to
abstract common parameters (e.g., Session IDs, etc.) from
a group of related URLs.

We hope that the attributes of <parameter> ele-
ments cover the majority of validation constraints that
designers require. However, in some circumstances, a
greater degree of control is required: This is provided by
the <validation> element. The <validation> ele-
ment allows complex constraints to be encoded in a
general purpose validation language. The content of the

774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 2. The XML DTD for the Security Policy Description Language v2.

<validation> element is a validation expression written
in a simple, call-by-value, applicative language which is
essentially a simply typed subset of Standard ML [13].
(Note that the precise details of the language are not the
main focus of this paper. In principle, any language
could be used to express validation constraints. For
expository purposes, we choose to make the language as
simple as possible.)

The abstract syntax of the validation language is shown
in Fig. 3. A well-formed validation expression has type
bool. If the validation expression of parameter, p, evaluates
to true, then this signifies that p contains valid data;
conversely, evaluating to false highlights a validation
failure. Badly typed validation programs are rejected by a
compile-time type-checking phase (see Section 3.4). Within
validation expressions, the value of the field specified in the
enclosing parameter element is referred to as this. Values
of other (declared) GET and POST parameters can be
referenced as getparam.name and postparam.name,
respectively. In this way, validation rules can be dependent
on the values of multiple parameters.

A number of primitive-defined functions and binary
operators are provided. Although we do not list them all
here, those of particular importance are outlined below:

. Arithmetic operators +, -, �, and / can be applied to
both integers and floating point values. String
concatenation is represented by the infix operator ++.

. The function format(s,regexp) returns true iff s
matches the form specified by regular expression,
regexp.

. We provide the function mid(s,l,r) which re-
turns the substring of s which starts at character l
and finishes at character r inclusively. (Characters of
s are numbered from 1).

. Functions are provided to convert between different
types. For example, String.fromInt(i) returns
the string representation of integer i.

. Function isdefined(p) takes a parameter (e.g.,
getparam.p or postparam.p) and returns a
Boolean indicating whether p is defined (i.e., has
been passed to the URL in the HTTP request). Using
an undefined parameter as an argument to any other
function or operator leads to a dynamically gener-
ated error message.

Transformation rules for parameters and cookies are
written in the same language as validation expressions, but
are often much simpler. The system provides a set of
common transformations in a library which we hope cover
most common cases. For example, if we wanted to remove
all spaces from a parameter p and then SQL-escape the
result, our specification would look like:

<transformation>

let fun filter(s: string,char: string):

string =

let val first:string = String.mid(s, 1, 1)

val rest:string = String.mid(s, 2,

String.length(s) - 1)

in if (fst = char) then filter(rest, char)

else first ++

(filter(rest, char))

end

in SQLEncode(filter(this, “ ”))

end

</transformation>

Our current transformation library contains the follow-

ing functions:

. EscapeSingleQuotes: Replace single quotes with their
HTML character encoding.

. EscapeDoubleQuotes: Replace double quotes with
their HTML character encoding.

. HTMLEncode: HTML-encode the data. Replace me-
tacharacters with their numerical representations.

. PartialHTMLEncode: HTML-encode the input, but
leave a small number of allowed tags untouched
(including style tags, , <u>, and <i>, and
anchors of the form ...).

. SQLEncode: SQL metacharacters such as ’;’ are
escaped.

We consider the HTML-encoding transformation to be of
particular importance since inadvertently forgetting to
HTML-encode user-input leads to Cross-Site Scripting
vulnerabilities (see Section 2). For this reason, we adopt
the convention that all parameters are HTML-encoded
unless explicitly specified otherwise in the security policy.
To turn off HTML-encoding, one must set the htmlencode
attribute of the transformation element to N. For
example, one may write:

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 775

Fig. 3. The abstract syntax of the validation language.

<transformation htmlencode=“N” />

Recall from Fig. 2 that policies within an SPDL-2
document consist of a series of <URL> and <cookie>

elements. We have already discussed <URL> elements in
detail; in a similar fashion, <cookie> elements allow
designers to place validation constraints on cookies re-
turned from clients’ machines.

3.3 Differences from SPDL Version 1

A number of enhancements have been made to the original
Security Policy Description Language (SPDL Version 1)
described in our previous work [8]. In particular, SPDL-2

. allows policies to be defined hierarchically, factoring
out common elements and leading to more readable
specifications;

. allows fine-grained control over expensive HTML-
modification operations, specifically the use of Java-
Script and MAC insertion; and

. uses the same language for both validation and
transformation expressions for consistency.

3.4 Policy Compiler

The policy compiler takes an SPDL-2 specification (as
described in Section 3.2) and compiles it for execution on
the security gateway. Validation rules and constraints are
also compiled into JavaScript which can be embedded into
forms and executed on clients. We recognize that generating
client-side form validation JavaScript code is not always
desirable—many applications already have their own,
custom JavaScript for this purpose—and, therefore, we allow
JavaScript generation to be turned off on a <policy>-wide
basis (by setting the javascript attribute of the <policy>
tag to “N”).

Validation and transformation expressions are type-
checked at compile-time, helping to eliminate errors from
SPDL-2 code. In the current incarnation of the system,
expressions are simply typed (that is, we do not allow
parametric polymorphism). However, should experience
show this to be too inflexible, there is no reason why more
sophisticated type-systems (e.g., ML style polymorphism
[14]) could not be employed in future versions.

3.5 The Security Gateway

Fig. 4 shows the algorithm executed by the security gateway
on receipt of an HTTP request. Note the following points:

. The security gateway is intended to be failsafe—if a
request does not properly match anything in the
policy, then it will be rejected.

. Transformations are total functions on strings—well-
written transformation code should not generate
exceptions. However, if a badly written transforma-
tion function does generate a runtime exception,
then the process is aborted and an error message is
returned to the client.

. If the SPDL-2 document requires the insertion of
client-side JavaScript or if the policy indicates that it
might contain a link to a MAC-protected URL, then
the security gateway must process the HTTP
response returned from the Web-server. The HTML
is parsed and rewritten in order for the appropriate
validation code (pregenerated by the SPDL-2 com-
piler) to be added to forms (see Section 3.6.1).
Message authentication codes are also inserted to
protect form fields and URL-parameters from mal-
icious client-side tampering (see Section 3.6.2).

3.6 Security Policy Creation Tool

The aim of the security policy creation tool (SPCT) is to
simplify the task of generating SPDL-2 for a large Web site.
A complete policy must associate every application URL
with a policy, even if most URLs have no complicated
security requirements. Writing out all the trivial cases by
hand is very tedious.3 The policy creation tool is able to
automatically generate all the trivial cases, leaving the more
complicated part of the specification to the human policy
designer.

The tool operates in a similar way to the security
gateway (Section 4) except that, rather than enforcing policy,
it creates it. The tool sits between the original application
and the clients, monitoring HTTP messages sent between
them. The system maintains a database of URLs observed,

776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 4. The tasks performed by the security gateway.

3. Especially if written out in XML!

together with information on their associated parameters
and cookies. The algorithm used by the tool is as follows:

For each HTTP message observed, let u be the target URL
and p1 . . . pn be the associated parameters.4

Is u already in the database?

. No: For each parameter pi

- assign a specialized type (bool, int, string...)
- set the pi’s required attribute to “Y”
- create a new database record for u

. Yes: For each parameter pi

- Is pi in the database record for u?

* No:

. assign a specialized type (bool, int,
string...),

. set the pi’s required attribute to “N”,

. add pi to the database record for u.
* Yes:

. Generalize the type associated with pi
to be consistent with all values seen so
far (e.g., if previous values were ints
and this value is a bool, then general-
ize to a string.)

Once the system has observed a sufficiently large and
representative amount of traffic, a useful SPDL-2 document
can be created. Rather than naively generating a single
<policy> element with a flat list of URLs, the policy
creation tool first applies simple heuristics to group
probably related URLs together. The heuristics include:

. URLs with a parameter in common (e.g.,SessionID)
are grouped together if possible to avoid having to
declare the shared parameter multiple times.

. URLs with prefixes in common (e.g., /Component/
ShoppingCart/) are automatically grouped to-
gether into a single <policy> element. This reflects
the fact that URLs with common prefixes are often
related; keeping them together enhances the read-
ability of the generated policy.

The resulting skeleton SPDL-2 document is then written
out to disk and may be edited by hand. Note that the SPCT
should be run under secure test conditions as the tool
assumes all observed requests are valid and creates a policy
to permanently allow them all. If the SPCT observes an
application-level attack, it will assume the attack is a
legitimate use of the Web site and extend the policy
appropriately.

3.6.1 Client-Side Form Validation

Whenever requested by the policy document, the security
gateway inserts JavaScript code to perform client-side
validation checks. (Recall that the insertion of JavaScript is
merely to enhance usability—the generated JavaScript is not
considered a substitute for server-side validation checking).
The inserted code checks most of the SPDL-2 constraints:

types, lengths, and all custom constraints written in the

validation language. The resulting program is inserted into

the onSubmit attribute of a <form> tag unless such an

attribute is already present—we take the view that, if a form

already has an onSubmit handler, then this takes priority

over our generated code.

3.6.2 Message Authentication Codes

We have already seen that an SPDL-2 specification can

declare that certain URL parameters must only contain data

accompanied by a Message Authentication Code (MAC) [12]

generated by the security gateway. As data is sent to the

client, the security gateway annotates it with MACs; as data

is returned from clients, the MACs are checked. In this way,

we prevent users from modifying data which should not be

changed on the client-side (e.g., security-critical hidden

form-fields).
Our implementation uses the HMAC [15] algorithm to

generate MACs by securely combining the protected data

with a secret key and a timestamp. In this way, an attacker

is unable to generate new MACs without first finding out

the secret key. One of our major concerns is to avoid replay

attacks [16] where clients replay messages already annotated

with MACs in unexpected contexts. We take two steps to

avoid such attacks:

1. We include a time-stamp in the MAC and do not
accept MACs which are more than a few minutes old.

2. Rather than generating separate MACs for each
individual protected field, we generate a single
MAC for all protected client-side state. This protects
against cut-and-splice attacks (in which MAC-
annotated fields are swapped into other messages).

Despite these preventative measures, the responsibility for

ensuring that replay attacks are not damaging ultimately

rests with the security policy designer. For example, in the

case study of Section 4, a MAC is generated for both the

productID and Price fields. Although users can replay

such messages, this results in multiple purchases of the

same product for the correct price. The intention is that the

MAC prevents the Price and productID being modified

independently.
SPDL-2 requires that HTML pages fetched from URLs

that are contained in a single <policy> block may only

contain links to MAC-protected URLs5 which are found in

the same <policy> block (or in a nested <policy> block).

By forcing the application’s URLs to be partitioned in this

way, we facilitate an important performance optimization

which is discussed in Section 5.

4 CASE STUDY

To illustrate our methodology, we consider using our

system to secure a simple e-Commerce system. The

hypothetical Web site is first partitioned into groups of

URLs (see Fig. 5) corresponding to:

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 777

4. For simplicity and without loss of generality, consider cookies as
additional URL parameters.

5. A MAC-protected URL has at least one <parameter> with its MAC
attribute set to “Y.”

. static content, including “welcome” pages, an
“about” page, and all static multimedia content
(e.g., images, videos, music);

. custom dynamic content specific to this site, including
code to browse the online product catalog; and

. an off-the-shelf shopping cart component capable of
credit card transactions.

For the sake of a more interesting scenario, let us assume

that:

. The custom dynamic content and the shopping cart
component are both configured to set a cookie,
sessionKey, to monitor user movement through
the site for marketing research purposes; and

. The off-the-shelf shopping cart component is sup-
plied in a binary-only form and, therefore, cannot be
modified.

Let us further assume that our site is vulnerable in the

following ways:

1. The custom code to view the online catalog has
missing input validation code and can be used to
execute arbitrary SQL against the backend database
using the attack described in Section 2.

2. The sessionKey cookie is predictable since it is
created using a time-seeded random number gen-
erator; clients can spoof other active sessions by
modifying the value of the cookie in their browser.

3. JavaScript can be embedded in the surname field of
the shopping cart login page which, when viewed on
the company’s intranet, leads to cross-site scripting
vulnerabilities.

4. The “modifying values of hidden form-fields” attack
(as described in the introduction) can be used to
reduce the price of items in the shopping cart
component.

4.1 Designing the Security Policy

We need to design an appropriate SPDL-2 description to

protect the site.
Clearly, the static content can be described simply as a

single <policy> block combining a straightforward list

of URLs; no processing is required for these pages. The

dynamic content, on the other hand, necessitates a more

complex policy description. In the example application

described above, the code is comprised of two separate

components: the custom site-specific code and the

shopping cart. Each component naturally maps onto its

own <policy> block. Since the sessionKey cookie is

common to both components (both the custom code and

the off-the-shelf shopping cart), it is desirable to nest both

the policy specification for custom code and the shopping

cart within a parent <policy> block which declares this

shared cookie. The resulting SPDL-2 document has the

following high-level structure:

<site name=“e-Commerce Web site” ...>

<policy name=”Static pages“ javascript=“N”>

<url prefix=“About.html” />

<url prefix=“Contact.html” />

...

</policy>

<policy name=“Dynamic content” ...>

<cookie name=“sessionKey” MAC=“Y”

maxlength=“16” type=“int”/>

<policy name=“our custom-written code”>

<url prefix=“ShowCatalogue.asp” />

...

</policy>

<policy name=“off-the-shelf shopping

cart component” ...>

778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 5. High-level structure of a simple e-Commerce Web site.

<url prefix=“Login.asp” />

<url prefix=“Buy.asp” />

...

</policy>

</policy

</site>

All that remains is to fill in the individual <url> elements
by writing the appropriate validation and transformation
code. To see how this is done, consider the final step in the
purchasing process in the shopping cart. Imagine that users
are sent an HTML form requesting their surname, credit-card
number, and its expiry date. The price and product-ID are
stored in hidden form fields on the form. For example, when
purchasing a product with productID=144264, the form
sent to the client is as follows:

<form method=“POST” action=”http:

//www.example/Buy.asp”>

<input type=“hidden” name=“price”

value=“423.54”>

<input type=“hidden” name=“productID”

value=“144264”>

<input type=“text” name=“surname”>

<input type=“text” name=“CCnumber”>

<input type=“text” name=“expires”>

</form>

Once purchases have been made, an order record is entered
into the company’s back-end database which can be
subsequently viewed on their local intranet.

The SPDL-2 fragment corresponding to the form’s action
URL is presented in Fig. 6. Each of the parameters shown in
the form above are declared and a number of validation and
transformation rules specified. Most of the SPDL-2 specifi-
cation is self-explanatory, although a few points are worth
noting. The <validation> element for the price field
simply states that negative prices are not allowed; the more
complicated validation expression for the CCnumber field is
an implementation of the Luhn-formula commonly used as
a simple validation check for credit-card numbers; the
validation expression for the expires field ensures that it
is of the form mm/yy and also checks that the month is in the
range 1-12.

Through repeating this process for all <url> elements,
we are able to fix all of the system’s vulnerabilities (described
above) without modifying any of the application code:

1. The form and cookie-manipulation attacks can no
longer be used since the price and productID

fields, along with the sessionKey cookie, can all be
protected by having their MAC attributes set to “Y.”
This forces the security gateway to generate and
check message authentication codes in order to
prevent their values being tampered with.

2. The surname field can be HTML-encoded, prevent-
ing XSS attacks.

3. SQL attacks are prevented by applying the transfor-
mation, SQLEncode (see Section 3.2), to escape
quotes in all relevant fields.

If specified in the SPDL-2 specification, the security
gateway inserts JavaScript code (derived from the SPDL-2

specification of Fig. 6) to check validation rules on the
client-side. In this example, JavaScript is generated to
ensure that credit-card numbers satisfy the Luhn-formula,
that expiry dates are of the form mm/yy, that the surname
field contains a nonzero-length value, etc. Note that, if extra
validation constraints are required, they can simply be
added once to the SPDL-2 specification. Using conventional
tools and techniques, the addition of extra validation
constraints may require them to be coded multiple times
(once in JavaScript for client-side validation and at least
once in the Web application’s source code).

5 SYSTEM PERFORMANCE

In this section, we discuss performance issues and present
experimental results derived from our implementation of
the security gateway.

Fig. 7 shows the worst-case latency of the security
gateway and compares it to the latency of other common
types of HTTP processing. The results were measured by
fetching the homepage of the Laboratory for Communica-
tion Engineering (University of Cambridge)6 augmented
with the Web-form described in our case-study of Section 4.
The leftmost bar shows the latency added by a Squid [17]
proxy cache when fetching a statically compiled version of
the page; the middle bar shows the added latency of
dynamically generating the page using PHP and a MySQL
[18] backend; the rightmost bar shows the latency of using
the security gateway to enforce the security policy of Fig. 6.
The final bar is divided into two sections: The (lower) solid
black section represents the latency due to buffering the
HTTP messages; the (upper) striped section shows the
latency due to parsing the HTTP messages and annotating
the HTML with MACs. Fig. 8 shows the relative cost of
processing HTTP requests and HTTP responses in the case
of our example Web-form. Note that the total processing
time is dominated by the HTML parsing stage.

The latency of our system appears large compared
with the latencies incurred in proxy caching and dynamic
page generation. To some extent, this is due to the fact
that our naive implementation is a prototype which is
completely unoptimized, based upon an inefficient non-
pipelined HTTP 1.0 library. However, we recognize that
the complexity of the application-level tasks performed by
the security gateway will necessarily incur more latency
than the lower-level manipulation performed by proxies
such as Squid. We regard our current implementation as
a proof-of-concept. In future work, we intend to empha-
size performance. Potential optimizations include 1) using
a specialized HTML parser to concentrate only on
relevant parts of HTML syntax (we currently use a
general HTML parser which performs a great deal of
unnecessary work); 2) reducing latency by streaming the
HTTP messages and processing them on-the-fly whenever
possible; and 3) writing speed critical parts of the security
gateway directly in C.

Fig. 9 shows how the total throughput of a single security
gateway varies as the number of concurrently connected
clients increases. Each client is running a single threaded

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 779

6. http://www-lce.eng.cam.ac.uk/.

application continuously requesting the test URL. The

machines are all connected on a fast 100Mbit/s switched

network and the measurements were taken running the

security gateway on a dual Intel P-III 500 MHz during an

offpeak time when the network was idle. The throughput

quickly reaches a maximum value as the CPUs become

saturated. Note that it took three clients to saturate two

CPUs, probably because of lack of support for persistent

connections in our HTTP library. Again, we are confident

that optimizing our code for performance and running the

filter on a higher spec machine would yield a significantly

higher maximum throughput.
We designed the security gateway in a stateless manner,

choosing to annotate URL parameters, form fields, and

cookies with MACs rather than storing session state in a

back-end database. Since the security gateway is stateless,

one may increase throughput linearly simply by deploying

multiple security gateways and using a load balancing

780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 6. SPDL-2 specification fragment for case study.

scheme7 to distribute work between them (see Fig. 10).

(Note that stateful systems do not scale linearly in this way

since, ultimately, the centralized state becomes a bottleneck
across the cluster.)

The measurements presented here are worst case in the

sense that the test policy and the test HTML were both

complicated and required extensive processing within the
security gateway. We designed SPDL-2 to allow more fine-

grained use of expensive features like MACs and client-side

JavaScript. In the first version of SPDL [8], turning on the
MAC facility for any URL would have necessitated

processing the HTML output of every page. By requiring

that URLs within a single <policy> block do not reference

MAC-protected URLs outside that block (see Section 3.6.2),
the new system allows the developer to specify the set of

application URLs which make use of MAC-protected client-

side state and, critically, those which do not. URLs with no
MAC or JavaScript requirements can be processed much

more efficiently by the security gateway as the HTTP

response from the Web-server can be streamed to the client
directly: It does not have to be parsed or rewritten. Given

that processing the HTTP response is by far the dominant

performance cost incurred by the security gateway (see
Fig. 8) significant speedups are achieved.

Furthermore, we believe that many HTML pages are

simpler than our contrived example and have fewer

security constraints (i.e., shorter pages without form
parameters), leading to better average case performance.

For example, consider that many of the HTTP messages

would contain graphics and, hence, would not require any
processing at all. A performance-optimized security gate-

way could examine the content-type header of HTTP

responses, using streaming instead of buffering if no HTML

processing is required.
In summary, the performance figures presented in this

section relate to our unoptimized prototype under worst-

case conditions. The system is designed to be scalable and

optimizable and, therefore, we believe that our techniques
are applicable in practice.

6 RELATED WORK

The idea of using firewalls to prevent unauthorized activity

at the application-protocol level is not new. A large number

of companies provide application-level firewalls as com-

mercial products. Typical services provided by such fire-

walls include virus protection and access control. However,

we are not aware of any application-level firewalls which

apply user-specified validation and transformation rules.
Damiani et al. [19] describe a method for enforcing rôle-

based access control policies for remote method invocations

via the SOAP protocol [20]. The type of policies described

are very different from ours: They consider access control

issues, whereas we try to prevent application-level attacks

in general. However, the similarity between the two

systems lies in the use of a firewall to enforce restrictions

at the HTTP-level.
The <bigwig> project [21] consists of domain-specific

languages and tools for the development of Web services. A

part of the <bigwig> project, PowerForms [22], allows

constraints (expressed as regular expressions) to be

attached to form fields. A compiler generates both client-

side JavaScript and code for server-side checks. Apart from

the lack of a general purpose validation language, the other

main difference between this and our work is that our

system allows the developer to attach validation constraints

on both the client and server side, irrespective of the

language the original application was written in.
Sanctum Inc., provide a product called AppShield [23]

which, like our security gateway, inspects HTTP messages

in an attempt to prevent application-level attacks. However,

despite this apparent similarity, there are significant

differences between the two systems: We take the program-

matic approach of specifying a security policy explicitly; in

contrast, AppShield has no policy description language or

compiler and attempts to infer a security policy dynami-

cally. While this allows AppShield to be installed quickly, it

limits the tasks it can perform. In particular, since there is

no policy description language for describing validation or

transformation rules, AppShield knows very little about

what constitutes valid parameter values in HTTP-requests

and can only perform simple checks on data returned from

clients. AppShield is intended as a plug-and-play tool

which provides a limited degree of protection for existing

Web sites with application-level security problems. In

contrast, we see our approach as a suite of development

tools and methodologies which aid in the design-process of

secure applications. Furthermore, we believe that the

combination of our Security Policy Creation Tool and the

Security Policy Description Language allows us to get the

best of both worlds—a reasonably quick to deploy (thanks

to the semiautomatic policy generation) and yet flexible

system able to express a wide variety of useful application-

specific security policies.

7 CONCLUSIONS AND FURTHER WORK

Enforcing a security policy across a large Web-application is

difficult because:

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 781

Fig. 7. A comparison of the latency of our system with latencies incurred

in common types of HTTP processing.

7. This assumes that load balancing can be achieved cheaply, e.g., by
round-robin DNS.

. The application may be written in a variety of
(noninteroperating) languages. In this case, there is
no easy way to abstract security-related code behind
a clean API. As a consequence, security-related code
will be scattered throughout the application.

. The languages used for Web development are not
always conducive to writing security-related code.
In particular, it is difficult to give any compile-time
guarantees about untyped scripting languages such
as PHP and VBScript.

. A large Web site may consist of hundreds, if not
thousands, of URLs. It must be possible to easily
manage the complexity of the security policy as the
application scales.

. Performance is a critical factor. It is important to be
able to avoid excessive processing in the common
case, while being able to impose sufficient checking
where necessary to ensure application safety.

. Web applications often contain third-party compo-
nents. Since it may not be viable to modify the source
of such components (either because the code was
shipped in binary form or because the license
agreement is prohibitive), then it is not obvious
how security vulnerabilities should be fixed. (In
reality, one is often at the mercy of the company who
wrote the component.)

In this paper, we have presented a method for
abstracting security-critical code from large Web applica-
tions which addresses the problems outlined above. A
specification language for describing application-level
security policies and a tool to help create policies was
described and illustrated with a realistic example.

As well as hoping to secure existing Web sites, we hope
that the tools and techniques described in this paper will be
useful in the development process of new Web applications. By
abstracting the security policy from the outset, programmers
have the advantage of a well-defined, centralized set of
assertions laid out in the SPDL-2 security specification. As
well as reducing the amount of code written by each
developer, we hope that the project’s SPDL-2 specification
would act as a useful document, aiding communication
between teams of developers and speeding up code-review
processes. Justifying these claims with reference to real-life
case studies is a high priority for future work.

Another direction for future work is to augment the
security gateway with routines for checking digital signa-
tures. It is not possible to leave this to the backend
application since any data transformation will cause the
signature to become invalid. Therefore, this step must be
performed in the security gateway. Similarly, in order to
support encryption, the endpoint must be in the security
gateway—it is impossible for the gateway to check data it
cannot read. Investigating these issues is left for future work.

We do not claim that we have found a automatic fix for
all application-level security problems: Although our tools
help to secure a Web application, it still requires a
competent, security-aware engineer to write/check the
security policies by hand.

Based on the research reported in this paper, we claim
that our methodology provides a stronger foundation for
secure Web applications than conventional tools and
development techniques. In addition, we believe that
applying this methodology in practice would make a

782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

Fig. 10. Total throughput of a cluster of security gateways as the number

of concurrently connected clients varies.

Fig. 8. A breakdown showing the relative cost of HTTP processing stages within the security gateway.

Fig. 9. Total throughput of a single security gateway as the number of

concurrently connected clients varies.

significant and immediate impact to the many Web sites
which currently suffer from application-level security
vulnerabilities.

ACKNOWLEDGMENTS

This work was supported by (UK) EPSRC (Grant Number:
GR/N64256) and The Schiff Foundation. Both authors were
sponsored by AT&T Laboratories, Cambridge. The authors
wish to thank Alan Mycroft and Andy Hopper for their
support, encouragement, and patience.

REFERENCES

[1] S. Mu, S. Goodley, “Security Hole Threatens British E-Tailers,”
The Daily Telegraph Newspaper (UK), available at http://
www.telegraph.co.uk/et?pg=/et/01/1/25/ecnsecu2.html, 25 Jan.
2001.

[2] L. Lorek , “New E-Rip-Off Maneuver: Swapping Price Tags,” ZD-
Net, available at http://www.zdnet.com/intweek/stories/news/
0,4164,2692337,00.html, 5 Mar. 2001.

[3] Internet Security Systems (ISS), “Form Tampering Vulnerabilities
in Several Web-Based Shopping Cart Applications,”ISS alert,
available at http://xforce.iss.net/alerts/advise42.php, 2003.

[4] R. Peteanu, “Best Practices for Secure Web Development,”
Security Portal, http://securityportal.com/cover/coverstor
y20001030.html, 2002.

[5] R. Peteanu, “Best Practices for Secure Web Development:
Technical Details,” Security Portal, available at http://security
portal.com/articles/Webdev20001103.html, 2002.

[6] L.D. Stein, “Referer Refresher,” http://www.Webtechniques.
com/archives/1998/09/Webm/, 2003.

[7] Microsoft, “HOWTO: Review ASP Code for CSSI Vulnerability,”
http://support.microsoft.com/support/kb/articles/Q253/1/
19.ASP, 2003.

[8] D. Scott and R. Sharp, “Abstracting Application-Level Web
Security,” Proc. 11th Int’l World Wide Web Conf., pp. 396-407,
May 2002.

[9] D. Flanagan, JavaScript: The Definitive Guide, third ed. O’Reilly,
1998.

[10] PHP Hypertext Preprocessor, available at http://www.php.net/,
2003.

[11] R. Petrusha, P. Lomax, and M. Childs, VBscript in a Nutshell: A
Desktop Quick Reference, first ed. O’Reilly, 2000.

[12] B. Schneier, Applied Cryptography: Protocols, Algorithms, and
Sourcecode in C. New York: John Wiley & Sons, 1994.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of
Standard ML (Revised). MIT Press, 1997.

[14] R. Milner, “A Theory of Type-Polymorphism in Programming,”
J. Computer and System Sciences, vol. 17, no. 3, 1978.

[15] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions
for Message Authentication,” Advances of Cryptology—Crypto ’96
Proc., 1996.

[16] P. Syverson, “A Taxonomy of Replay Attacks,” Proc. Computer
Security Foundations Workshop VII, 1994.

[17] Squid Web Proxy Cache, available at http://www.squid-cache.org/,
2003.

[18] MySQL Database Server, available at http://www.mysql.com/,
2003.

[19] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P.
Samarati, “Fine Grained Access Control for Soap E-Services,” Proc.
10th Int’l World Wide Web Conf., pp. 504-513, May 2001.

[20] D. Box, “Simple Object Access Protocol (SOAP) 1.1. World Wide
Web Consortium (W3C),” http://www.w3.org/TR/SOAP, May
2000.

[21] “The <Bigwig> Project,” http://www.brics.dk/bigwig/, 2003.
[22] C. Brabrand, A. Mller, M. Ricky, and M. Schwartzbach, “Power-

forms: Declarative Client-Side Form Field Validation,” World Wide
Web J., vol. 3, no. 4, 2000.

[23] Sanctum Inc, “AppShield2 White Paper,” Mar. 2001. Available
from http://www.sanctuminc.com/, 2003.

David Scott worked at AT&T Laboratories in
Cambridge where he helped develop the IDL
compiler for omniORB, AT&T’s open-source
CORBA implementation. He then moved to the
Laboratory for Communication Engineering at
the University of Cambridge to continue his
research. His interests now include enhancing
the security and reliability of component-based
applications through interface analysis and
augmentation.

Richard Sharp currently works in Intel Re-
search having recently completed the PhD
degree at the University of Cambridge. His main
interest involves developing high-level tools to
assist in the construction of complex systems.
This principle is embodied both in his work in the
field of Web development and his research into
hardware synthesis.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

SCOTT AND SHARP: SPECIFYING AND ENFORCING APPLICATION-LEVEL WEB SECURITY POLICIES 783

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

