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Abstract. The FLaSH project concerns the development of a hardware synthesis system
based around the idea of mapping a high-level functional specification language, SAFL, into
hardware using sophisticated compiler technology.
The system has two phases: first we transform SAFL programs using meaning-preserving
transformations to choose the area-time position (e.g. by resource duplication/sharing, spe-
cialisation, pipelining) while remaining a high-level specification. After this the FLaSH com-
piler maps the resultant SAFL program into hardware in a resource-aware manner, that is
we map separate functions into separate functional units; functions which are called twice
now become shared functional units—accessed by multiplexers and possibly arbiters. The
current compiler outputs hierarchical RTL Verilog.
The first phase is user-guided. The second is completely automatic—it uses optimising
compiler technology to insert arbiters for shared functional units and to insert intermediate
registers (both on an ‘only when needed’ basis). We justify SAFL as both amenable to
transformation and facilitating an efficient translation to hardware.
The current compiler has been used to implement a small commercial processor; we achieve
similar gatecounts to two previous RTL and netlist specifications but with around one tenth
the source code.

1 Introduction

Recent interest in hardware/software co-design has sparked an interest in silicon compilers which
translate high-level languages such as C [3], Occam [11] and Java [6] into hardware. Although
these systems succeed in producing correct circuits from high-level specifications they do not make
full use of the high-level structure inherent in their input programs. For example, such compilers
typically inline all function calls as a pre-processing stage, flattening program structure and risking
an exponential increase in the size of both the source code and the final implementation.

The FLaSH (Functional Languages for Synthesising Hardware) project grew from the motiva-
tion for a high-level hardware description language which:

– allows a designer to describe hardware at a high-level whilst still retaining control over circuit
structure;

– separates specification from implementation (i.e. a single specification can be compiled to a
wide range of hardware styles);

– has high-level properties which aid user-guided program transformation; and
– facilitates program analysis leading to automatic generation of efficient circuits.

In an attempt to achieve these aims we have designed (a) a functional language, SAFL [9], which
has a number of properties which are desirable for hardware description; and (b) an optimising
compiler [13] which translates SAFL specifications into hardware.



One contribution of this research is the novel way we compile source-level functions (resource
awareness). Our approach can be illustrated by considering the compilation of the following SAFL
code:

fun mult(x, y, acc) =

if (x=0 | y=0) then acc

else mult(x<<1, y>>1, if y.bit0 then acc+x else acc)

fun cube(x) = mult(mult(x, x, 0), x, 0)

From this specification, the FLaSH compiler generates two hardware resources: a circuit, Hmult,
corresponding to mult1 and a circuit, Hcube, corresponding to cube. The two calls to mult are not

inlined: at the hardware level there is only one shared resource, Hmult, which is invoked twice by
Hcube. We say that our compiler is resource-aware because of the way it translates separate SAFL
function definitions into separate hardware resources.

Source-level program transformation is exploited to allow multiple SAFL programs (each rep-
resenting a different possible implementation when compiled) to be derived from an initial SAFL
specification. These transformations are user-guided and applied as a pre-compilation phase. For
the above example we can use SAFL-level transformation to produce a variant with two (un-
shared) shift-add multipliers—this is performed by duplicating the definition of mult as mult’

and replacing cube’s definition with:

fun cube(x) = mult’(mult(x, x, 0), x, 0)

In general, resource-awareness allows us to use fold/unfold transformations [2] at the SAFL-level
to express time-area tradeoffs at the hardware level. Section 5 presents a variety of useful trans-
formations which naturally describe time-area tradeoffs.

We argue that resource-aware silicon compilation of SAFL specifications is a powerful technique
for the following reasons:

– It enables a designer to write code at a high-level whilst still having control over the low-level
structure of the generated circuit.

– Semantic preserving program transformation becomes a very powerful technique allowing a
number of different implementations to be explored from a single specification (see Section 5).

– The functional properties of SAFL allow the FLaSH compiler to produce highly parallel cir-
cuits.

– SAFL is a high-level language and is hence implementation independent. This means that
SAFL serves equally well to specify, for example, synchronous or asynchronous hardware.

– Issues surrounding resource-awareness, such as placement of arbiters to protect shared re-
sources (see Section 3.1) and insertion of permanising registers (see Section 3.2), are handled
automatically by high-level program analysis performed by the FLaSH compiler. This frees
designers from low-level implementation details, allowing them to concentrate on high-level
algorithmic issues.

The purpose of this paper is to give a general overview of the FLaSH project, introducing
resource-aware hardware description and synthesis. Due to space constraints we cannot give de-
tailed presentations of the algorithms used in our compiler. These are presented fully in [13].
Similarly, there is not room to describe the language design issues relating to SAFL (see [9]).

The remainder of this paper is structured as follows: Section 2 gives an informal overview of
the SAFL language and Section 3 discusses the compilation of SAFL to hardware, presenting two
issues that arise as a result of the resource-aware compilation strategy. Sections 4 and 5 attempt
to justify some of our claims about resource-aware compilation of SAFL by providing concrete
examples of high-level program analysis and SAFL-level program transformation respectively.
Finally, Section 6 concludes and outlines future work.

1 The tail-recursive call is synthesised into a feedback loop at the circuit level.
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1.1 Comparison with other work

We are not the first to observe that the mathematical properties of functional languages are de-
sirable for hardware description and synthesis. A number of synchronous dataflow languages, the
most notable being Lustre [4], have been used to synthesise hardware from declarative specifica-
tions. However, whereas Lustre is designed to specify reactive systems SAFL describes interactive
systems (this taxonomy is introduced in [1]). Furthermore Lustre is inherently synchronous: spec-
ifications rely on the explicit definition of clock signals. This is in contrast to SAFL which could,
for example, be compiled into either synchronous or asynchronous circuits.

The ELLA HDL is often described as functional. However, although constructs exist to define
and use functions the language semantics forbid a resource-aware compilation strategy. This is
illustrated by the following extract from the ELLA manual [8]:

Once you have created a named function, you can use instances of it as required in other
functions . . . [each] instance of a function represents a distinct copy of the block of circuitry.

ELLA contains low-level constructs such as DELAY to create feedback loops, restricting high-level
analysis. SAFL uses tail-recursion to represent loops; this strategy makes high-level analysis a
more powerful technique.

Previous work on compiling declarative specifications to hardware has centred on how func-
tional languages themselves can be used as tools to aid the design of circuits. Sheeran’s et al.
muFP [14] and Lava [15] systems use functional programming techniques (such as higher order
functions) to express concisely the repeating structures that often appear in hardware circuits.
In this framework, using different interpretations of primitive functions corresponds to various
operations including behavioural simulation and netlist generation. Our approach takes SAFL
constructs (rather than gates) as primitive. Although this restricts the class of circuits we can
describe to those which satisfy certain high-level properties, it permits high-level analysis and
optimisation yielding efficient hardware.

Conventional HDLs such as Verilog and VHDL allow a user to specify a design at various levels
of abstraction. We argue that we provide a higher-level of abstraction in that our system provides
explicit support for resource management (e.g. automatic insertion of arbiters and temporary
registers). Verilog and VHDL leave this to the programmer.

2 An informal overview of the SAFL language

As SAFL is being used for research purposes we deliberately kept the language simple. It is
designed to be powerful enough to exhibit the behaviour we wish to study without the clutter
of unnecessary features. However, despite its simplicity SAFL is still powerful enough to express
a wide spectrum of designs. To demonstrate this we have used SAFL to specify a commercial
processor2.

SAFL is a language of first order recurrence equations with an ML-like syntax [7]; a user
program consists of a number of function definitions (declared using the fun keyword) and a
single initialising expression declared with the do keyword. The initialising expression is invoked
as soon as the program is executed and is thus analogous to C’s main() function. The abstract
syntax of SAFL expressions, e, is as follows (we abbreviate tuples (e1, . . . , ek) as ~e):

– variables: x; constants: c;
– user function calls: f(~e);
– primitive function calls: a(~e)—where a ranges over primitive operators (e.g. +, -, <=, && etc.);
– conditionals: if e1 then e2 else e3; and
– let bindings: let ~x = ~e in e0 end

2 We implemented the XAP processor designed by Cambridge Consultants: http://www.camcon.co.uk;
we did not implement the SIF instruction.
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SAFL has a call-by-value semantics as strict evaluation naturally facilitates fine-grained parallel
execution which is well-suited to hardware implementation.

We enforce the restrictions that: (i) a function can only call previously defined functions;
and (ii) all recursive calls must be in tail-context. Restriction (i) prohibits mutual recursion3

which, if treated näıvely can create cycles in our call graph, leading to deadlock in our hardware
implementations where functions represent shared resources. Restriction (ii) ensures that the
amount of storage (e.g. number of registers) needed for a program’s execution can be calculated
at compile time, a property that we call static allocatability.

3 Resource-Aware Compilation of SAFL

We introduced the concept of resource-awareness by means of an example in Section 1. More
generally, our compiler translates each SAFL function definition, f(~x) = e, into a single hardware
resource, Hf , consisting of:

– a fixed (and statically computable) amount of storage;
– an output port, Pf ; and
– a circuit to compute e to Pf

Hence, multiple calls to the function f at the source level always correspond to sharing resource Hf

at the hardware level. Although at first sight this policy may seem restrictive, the reality is quite
the opposite. It is because of resource awareness that SAFL program transformation naturally
captures resource sharing/duplication tradeoffs (see Section 5.1). This makes our framework more
powerful than other silicon compilers which always inline function calls—we view inlining as an
implementation choice expressed as a source-level transformation.

The FLaSH compiler uses the functional properties of SAFL to produce highly parallel hard-
ware; more precisely, all actual parameters and let-declarations are evaluated in parallel. The
combination of parallelism and resource-awareness leads to some interesting issues that the FLaSH
compiler needs to deal with. Two such issues are presented below.

3.1 Parallel Sharing Conflicts

Circuits generated by the FLaSH compiler consist of multiple threads accessing a shared set of
resources. Consider the following SAFL code fragment taken from the specification of a processor:

...

fun add(x,y) = x+y

...

fun ALU(op, arg1, arg2, ...) =

if op=1 then add(arg1,arg2)

else ...

...

fun calculate_new_PC(current_PC,offset,condition) =

if condition then add(current_PC,offset)

else current_PC

...

Since both the ALU and calculate new PC functions call add, FLaSH will synthesise a circuit
containing a single add-unit shared between the ALU and calculate new PC units. One interesting
question is, although the add circuit is shared, is it subject to multiple concurrent accesses—i.e.
is there a scenario where both the calculate new PC and ALU functions may try to call the add

3 In fact the formal semantics of SAFL presented in [9] permits a form of mutual recursion by stratifying
function definitions into (potentially mutually recursive) groups.
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circuit simultaneously? If so we say that the calls to add have a parallel sharing conflict and
automatically synthesise an arbiter to protect Hadd from multiple concurrent accesses4.

The FLaSH compiler performs parallel conflict analysis to infer which hardware resources are
subject to sharing conflicts. This enables us to synthesise arbiters only where necessary—even
though a functional unit is shared our compiler is often able to infer from the program structure
that an arbiter is not required. Parallel conflict analysis is described in detail in Section 4.

3.2 Register Placement

Consider the following SAFL expression:

let x = f(4)

in let y = f(5)

in x + y

end

end

In this example x is bound to the result of computing f(4) whilst y is bound to the result of
computing f(5). However, since f represents a shared resource, Hf , with a single output we see
that, if translated näıvely, the second call to f will invalidate the first (since both x and y are
bound to Hf ’s shared output). This is an instance of a sequential sharing conflict, the result of
which is that we must synthesise a register to latch the value of f(4) before it is corrupted. We
call these latches permanising registers since they make the result of computing an expression
permanent, decoupling the caller from the callee.

The FLaSH compiler translates SAFL code into a control/data-flow intermediate represen-
tation and uses dataflow analysis to place registers. The details of this process are documented
in [13].

4 High-level Analysis of SAFL for Optimising Compilation

We have stated that SAFL is well suited to high-level analysis and, further, that such analysis
allows our compiler to generate efficient circuits. Here we attempt to justify this claim by giving
a concrete example of one such analysis: parallel conflict analysis (introduced in Section 3.1 and
abbreviated to PCA for the remainder of this paper). PCA is: (i) useful—it allows us to infer
which shared resources require arbiters; (ii) only practically possible due to SAFL’s high-level
properties; and (iii) implemented efficiently as part of the FLaSH compiler.

We perform PCA at the abstract syntax level. In this presentation we use the notation intro-
duced in Section 2 to represent SAFL expressions. In order to distinguish distinct calls we assume
that each abstract-syntax node is labelled with a unique identifier, α, writing fα(e1, . . . , en) to
indicate a call to function f at abstract-syntax node α. We define a call set to be a set of calls. The
result of PCA is a conflict set: a call set containing the calls which require arbiters. For example,
if the resulting conflict set is {f 1, f2, f5, g10, g14} then we would synthesise two arbiters: one for
calls {f1, f2, f5} and one for calls {g10, g14}.

4.1 Equations for Parallel Conflict Analysis

Let ef represent the body of function f . Let the predicate RecursiveCall(fα) hold iff fα is a re-
cursive call (i.e. occurs within ef ). C[[e]] returns the set of non-recursive calls which may occur as

4 Note the similarity between parallel sharing conflicts and structural hazards [5] in pipelined processor
design.
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a result of evaluating expression e:

C[[x]] = ∅

C[[c]] = ∅

C[[a(e1, . . . , ek)]] =
⋃

1≤i≤k

C[[ei]]

C[[fα(e1, . . . , ek)]] = (
⋃

1≤i≤k

C[[ei]] ) ∪

{

∅ if RecursiveCall(fα)
{fα} ∪ C[[ef ]] otherwise

C[[if e1 then e2 else e3]] =
⋃

1≤i≤3

C[[ei]]

C[[let ~x = ~e in e0]] =
⋃

0≤i≤k

C[[ei]]

PC (S1, . . . ,Sn) takes call sets, (S1, . . . ,Sn), and returns the conflict set resulting from the as-
sumption that calls in each Si are evaluated in parallel with calls in each Sj (j 6= i):

PC (S1, . . . ,Sn) =
⋃

i6=j

{fα ∈ Si | ∃β. fβ ∈ Sj}

We are now able to define A[[e]] which returns the conflict set due to expression e:

A[[x]] = ∅

A[[c]] = ∅

A[[a(e1, . . . , ek)]] = PC (C[[e1]], . . . , C[[ek]]) ∪
⋃

1≤i≤k

A[[ei]]

A[[f(e1, . . . , ek)]] = PC (C[[e1]], . . . , C[[ek]]) ∪
⋃

1≤i≤k

A[[ei]]

A[[if e1 then e2 else e3]] =
⋃

1≤i≤3

A[[ei]]

A[[let ~x = ~e in e0]] = PC (C[[e1]], . . . , C[[ek]]) ∪
⋃

0≤i≤k

A[[ei]]

Finally, for a program, p, consisting of:

– a sequence of user-function definitions: fun f1(. . .) = e1; . . . ; fun fn(. . .) = en and
– an initial expression, e0

A[[p]] returns the conflict set resulting from program, p:

A[[p]] =
⋃

0≤k≤n

A[[ek]]

(The letter A is used since A[[p]] represents the calls which require arbiters.)

5 Transformation of SAFL specifications

Resource-awareness makes source-level program transformation of SAFL specifications a power-
ful technique. A designer can explore a wide range of hardware implementations by repeatedly
transforming an initial specification in ways which preserve semantics but vary implementation.

We have investigated a number of transformations which correspond to concepts in hardware
design. Some examples of these transformations are presented below.
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5.1 Resource duplication vs sharing

The SAFL code fragment in Section 3.1 specifies a single add unit shared between the ALU and
calculate new PC circuits. Transforming this into a design which specifies two separate adders is
trivial:

fun add_1(x,y) = x+y

fun add_2(x,y) = x+y

...

fun ALU(op, arg1, arg2, ...) =

if op=1 then add_1(arg1,arg2)

else ...

...

fun calculate_new_PC(current_PC,offset,condition) =

if condition then add_2(current_PC,offset)

else current_PC

Hence we observe that straightforward (and obviously correct) SAFL transformations provide
fine-grained control over resource sharing/duplication. The reason for the simplicity of such trans-
formations is that the task of generating inter-resource glue-logic (such as arbiters and temporary
registers) is the duty of the FLaSH compiler rather than the programmer. Investigating similar
tradeoffs in a conventional HDL (such as Verilog) would require time-consuming and error-prone
modifications throughout the code—arbiters and permanising registers would have to be placed
by hand.

5.2 Static vs dynamic scheduling

Call-by-value evaluation and referential transparency allows the FLaSH compiler to produce cir-
cuits where all function call arguments are evaluated in parallel. This means that for the following
SAFL expression:

g(f(4), f(5))

f(4) and f(5) (the arguments of the call to g) will be evaluated concurrently5. PCA (Section 4)
determines that an arbiter is to be synthesised to enforce mutual exclusion to Hf, thus dynamically
scheduling access to the shared resource.

Now consider transforming the above expression into:

let x = f(4)

in g(x, f(5))

end

In this case an arbiter is not required since we have specified a static schedule of access to shared
resource Hf: f(4) is evaluated strictly before f(5).

More generally, by using let as a sequentialisation operator we see that SAFL is expressive
enough to represent: (i) static scheduling (order of access to a shared resource specified within the
source code) and (ii) dynamic scheduling (when no order of access is specified directly an arbiter
is generated to perform dynamic scheduling).

5 This simple example is chosen for expository purposes only; in reality, for this trivial case, the FLaSH
compiler automatically performs the above transformation to remove the need for an arbiter. However,
in more complex cases (e.g. where the temporal ordering is data-dependent) it is beneficial to synthesise
an arbiter.
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5.3 Time vs area

We define the area of a SAFL program to be the total space required for its execution. Due to
static allocation it is easy to show that area is O(length of program). Similarly, we can talk about
execution time.

In this framework, Burstall and Darlington’s fold/unfold transformations [2] applied at the
SAFL-level reflect area-time tradeoffs at the hardware level. As an example of this, consider
applying the unfold rule to the recursive call in the definition of mult (from Section 1) to yield:

fun mult2(x, y, acc) =

if (x=0 | y=0) then acc

else let (x’,y’,acc’) = (x<<1, y>>1,

if y.bit0 then acc+x else acc) in

if (x’=0 | y’=0) then acc’

else mult2(x’<<1, y’>>1, if y’.bit0 then acc’+x’ else acc’)

Folding/unfolding recursive function calls before compiling to synchronous hardware corresponds
to trading the amount of work done per clock cycle against clock speed. The FLaSH compiler
translates mult2 into a design which requires half as many clock cycles as mult, but more gates.

5.4 Hardware vs software

We have demonstrated [10] how source-level transformation of SAFL allows one to partition a de-
sign into hardware and software. As part of the transformation process, a parameterised processor
is automatically generated to execute the software instructions.

Although the idea of using source-level transformation to formalise hardware/software co-
design is not new [12], we argue that the extra transformational power of functional languages
allows more freedom—in particular resource-awareness allows one to generate designs consisting
of multiple processors capable of operating concurrently. The details of this transformation are
too long for this paper; they are described fully in [10].

6 Future directions and further work

By designing a working compiler and prototype development environment we have demonstrated
that resource-aware silicon compilation of declarative specifications is a promising technique. How-
ever, more research is needed if the FLaSH system is to be used for large scale industrial applica-
tions:

– We are currently investigating a type-system for SAFL with provision for user defined recursive
types and statically expanded recursion.

– What are the limits of pure functional languages for hardware synthesis? We have briefly
experimented with side-effecting function calls (e.g. memory write(address,data)). We are
designing a transaction-based system to manage access to external devices with state in a
controlled way.

– We plan to experiment with other compilation strategies. In particular, we intend to produce
a back-end for the FLaSH compiler which outputs asynchronous logic.
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