
A Higher-Level Language for

Hardware Synthesis

Richard Sharp1 and Alan Mycroft1,2

1 Computer Laboratory, Cambridge University
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK

2 AT&T Laboratories Cambridge
24a Trumpington Street, Cambridge CB2 1QA, UK

am@cl.cam.ac.uk

rws@uk.research.att.com

Abstract. We describe SAFL+: a call-by-value, parallel language in
the style of ML which combines imperative, concurrent and functional
programming. Synchronous channels allow communication between par-
allel threads and π-calculus style channel passing is provided. SAFL+
is designed for hardware description and synthesis; a silicon compiler,
translating SAFL+ into RTL-Verilog, has been implemented.

By parameterising functions over both data and channels the SAFL+
fun declaration becomes a powerful abstraction mechanism unifying a
range of structuring techniques treated separately by existing HDLs.

We show how SAFL+ is implemented at the circuit level and define the
language formally by means of an operational semantics.

1 Introduction

In 1975 a single Integrated Circuit contained several hundred transistors; by
1980 the number had increased to several thousand. Today, designs fabricated
with state-of-the-art VLSI technology often contain several million transistors.

The exponential increase in circuit complexity has forced engineers to adopt
higher-level tools. Whereas in the 1970s transistor and gate-level design was the
norm, during the 1980s Register Transfer Level (RTL) Hardware Description
Languages (HDLs) started to achieve wide-spread acceptance. Using such lan-
guages, designers were able to express circuits as hierarchies of components (such
as registers and multiplexers) connected with wires and buses. The advent of this
methodology led to a dramatic increase in productivity since, for some classes
of design, time consuming place-and-route details could now be automated

More recently, high-level synthesis (sometimes referred to as behavioural syn-

thesis) has started to have an impact on the hardware design industry. In the
last few years commercial tools have appeared on the market enabling high-level,
imperative languages (referred to as behavioural languages within the hardware

community) to be compiled directly to hardware. Although these techniques un-
doubtedly offer increased levels of abstraction over RTL specification there is
still room for even higher level HDLs, particularly when it comes to specifying
interfaces between separate components (see Section 1.1). Since current trends
predict that the exponential increase in transistor density will continue through-
out the next decade, investigating higher-level tools for hardware description
and synthesis will remain an important research area.

We present a language designed for hardware synthesis which, we argue, is
higher level than existing behavioural synthesis packages. This paper builds on
previous work in which we use SAFL [14] (Statically Allocated Functional Lan-
guage) for circuit description. To reflect this we choose to call our new language
SAFL+. Our optimising SAFL silicon compiler [17] has been extended to handle
SAFL+ and the resulting system has been tested on a number of small designs.
The contributions of this paper are:

– We extend SAFL with synchronous channels and assignment and argue that
the resulting combination of functional, concurrent and imperative styles is
a powerful framework in which to describe a wide range of hardware designs.

– Channel passing in the style of the π-calculus [12] is introduced. By param-
eterising functions over both data and channels the SAFL+ fun declaration
becomes a powerful abstraction mechanism unifying a range of structuring
techniques treated separately by existing HDLs (Section 2.3).

– We show how SAFL+ is implemented at the circuit-level (Section 3) and de-
fine the language formally by means of an operational semantics (Section 4).

1.1 The Motivation for Higher-Level HDLs

Register Transfer Level HDLs (e.g. RTL Verilog) describe hardware as a set of
blocks parameterised over input and output ports. Once defined, the blocks can
be instantiated (possibly multiple times) and explicitly connected with wires and
buses. For example, the Verilog language supports the declaration of modules:

module mod name(port
1
, ..., portn);

... body

endmodule

Declared modules are instantiated and connected to form a design:

// a 2-place buffer made by connecting two 1-place buffers

wire in_wire, connection, out_wire;

buffer_instance1 buffer(in_wire,connection);

buffer_instance2 buffer(connection,out_wire);

Although behavioural languages provide higher-level primitives for describ-
ing block internals, the block remains the primary abstraction mechanism used
to structure large designs. For example, at the top level, a Behavioural Verilog
program still consists of module declarations and instantiations albeit that the

modules themselves contain higher-level constructs such as assignment, sequenc-
ing and while-loops.

Experience has shown that the notion of block is a useful syntactic abstrac-
tion, encouraging structure by supporting a “define-once, use-many” method-
ology. However, as a semantic abstraction it buys one very little; in particular:
(i) any part of a block’s internals can be exported to its external interface; and
(ii) inter-block synchronisation mechanisms must be coded explicitly on an ad
hoc basis.

Point (i) has the undesirable effect of making it difficult to reason about
the global (inter-module) effects of local (intra-module) transformations. For ex-
ample applying small changes to the local structure of a block (e.g. delaying
a value’s computation by one cycle) may have dramatic effects on the global
behaviour of the program as a whole. We believe point (ii) to be particularly
serious. Firstly, it leads to low-level implementation details scattered through-
out a program—e.g. the definition of explicit control signals used to sequence
operations in separate modules, or (arguably even worse) reliance on unwritten
inter-module timing assumptions. Secondly, it inhibits compiler analysis: since
inter-block synchronisation mechanisms are coded on an ad hoc basis it is very
difficult for the compiler to infer a system-wide ordering on events. Based on
these observations, we argue that structural blocks are not a high-level abstrac-
tion mechanism.

Through our previous work on SAFL we demonstrated that these problems
can be alleviated by structuring code as a series of function definitions. The
properties of functions make it easier to reason about the effects of local trans-
formations. As a result we are able to make extensive use of source-to-source
program transformation to assist with architectural exploration [15, 14]. The “in-
voke and wait for result” interface provided by functions removes the burden of
explicitly specifying ad hoc inter-module synchronisation mechanisms. Further-
more our compiler is able to automatically infer a system-wide partial-ordering
on events thus increasing the scope for global analysis and optimisation. For
example consider the SAFL expression f(g(3),h(5)). From this (and the call-
by-value property of SAFL) we can infer that g and h will be invoked in parallel,
after which f will be invoked. Our SAFL compiler exploits a number of analyses
and optimisations based on these event orderings (e.g. Soft Scheduling [18] and
Data Validity Analysis [17]).

However, although SAFL is well-suited to describing certain types of hard-
ware design, the facility for I/O is lacking. In addition we sometimes find the “call
and wait for result” interface to be a little too restrictive. By extending SAFL
with channel-communication, channel passing and assignment we intend SAFL+
to be a truly general purpose hardware description language. In Section 2.3 we
show that SAFL+ supports a programming style which relaxes many of SAFL’s
restrictions without sacrificing analysibility.

Related Work Many parallels can be drawn between SAFL+ and the Hard-
wareC [8] language since both provide synchronous channels and allow func-

tion definitions to be treated as shared resources. The major differences are:
(i) whereas HardwareC offers purely imperative features, SAFL+ also supports
a functional style (we find SAFL+’s let-construct for declaring immutable bind-
ings to be particularly useful for describing data-dominated hardware); (ii) the
expressivity of SAFL+ is greater due to our less restrictive scheduling policy [18];
and (iii) HardwareC provides a block primitive for structural-level declarations.
In contrast SAFL+ only allows function declarations.

An interesting observation is that, as a direct result of SAFL+’s channel
passing facility, all four of HardwareC’s structuring primitives (block, process,
procedure and function) can be seen as special cases of SAFL+ fun declara-
tions (see Section 2.3). Since SAFL+ only requires a single structuring primitive
it yields a simpler semantics.

Hoe and Arvind [5] describe TRAC: a hardware synthesis system which gen-
erates synchronous hardware from a high-level specification expressed as a term-
rewriting system. Broadly speaking, terms correspond to states and rules cor-
respond to combinatorial logic which calculates the next state of the system.
Restrictions imposed on the structure of rewrite rules facilitate the static alloca-
tion of storage. This closely corresponds to the tail-recursion restriction imposed
on SAFL+ programs to achieve static allocation [14].

Previous work on compiling declarative specifications to hardware has cen-
tred on how functional languages can be used as tools to aid the structural

description of circuits—e.g. muFP [19], Lava [4] and the DDD algebra [7]. Func-
tional programming techniques (such as higher order functions) are used to ex-
press concisely the regular, repetitive structures that often appear in hardware
circuits. In this framework, different interpretations of primitive functions corre-
spond to various operations (e.g. behavioural simulation and netlist generation).
Our work differs from this in that we adopt a behavioural approach abstracting
circuit-level details as far as possible. For example, when expressing a design
in Lava, a programmer must explicitly ensure that design-level constraints (e.g.
gate fan-out limits) are satisfied. In contrast we consider this to be a low-level
detail: ensuring a circuit conforms to low-level design-rules is the job of our
SAFL+ compiler. We take SAFL+ constructs (rather than gates) as primitive.
Although this restricts the class of circuits we can describe to those which sat-
isfy certain high-level properties, it increases the scope for high-level analysis
and optimisation.

A number of languages have been developed which provide structural ab-
stractions similar to those available in the Lava/muFP/DDD framework. For
example HML [9] is one such language based on Standard ML [13]; Jazz [2] com-
bines a polymorphic type-system with object oriented features; Hawk [11], like
Lava, is embedded in Haskell, but focuses on simulation rather than synthesis.

2 SAFL+ Language Description

In this section we present the syntax of SAFL+ and informally describe its
semantics. The language semantics are defined formally in Section 4.

SAFL+ is a concurrent, first-order, call-by-value language which, in the
style of ML [13], supports a combination of functional and imperative program-
ming. Function call arguments and let-definitions are evaluated in parallel; syn-
chronous channels allow parallel threads to communicate with each other.

Function declarations take the form:

fun f(x1, . . . , xk) [c1, . . . , cj] = e (where k, j ≥ 0)

We make a syntactic distinction between arguments used to pass data, x1, . . . , xk,
and arguments used to pass channels c1, . . . , cj . Iteration is provided in the form
of self-tail-recursive calls. As with SAFL, general recursion is forbidden to permit
static allocation of storage [14]. Programs have a distinguished function, main,
which represents an external world interface—at the hardware level it accepts
values on an input port and may later produce a value on an output port. (In
the current version of the language, main does not have channel parameters).

In the following a ranges over primitive functions (such as +, * etc.), f ranges
over user-defined functions and l ranges over record field labels. We use r for
array variables, c for channel variables, x for other variables, and i for integer
constants. A vector of parameters, x1, . . . , xk, is sometimes abbreviated to ~x .
The abstract syntax of SAFL+ programs, p, is presented in Figure 1.

e ← x | i | () (Variable, Integer constant, Unit constant)
| {l1 = e1, . . . lk = ek} | e.l (Record creation/selection)
| r[e] | r[e] := e (Array read/write)
| c? | c ! e (Channel read/write)
| a(e1, . . . , ek) (Call to primitive function)
| f(e1, . . . , ek)[c1, . . . , cj] (Call to user-defined function)
| if e1 then e2 else e3 (Conditional)
| let ~x = ~e in e0 (Parallel let)
| static p in e (Local declarations)
| e ‖ e | e; e (Parallel/sequential composition)

d ← fun f(x1, . . . , xn)[c1, . . . , cn] = e (Function declaration)
| channel c (Channel declaration)
| channel external c (I/O Channel declaration)
| array [i] r (Array declaration)

p ← d | d p

Fig. 1. The abstract syntax of SAFL+ programs, p

Our existing compiler provides a number of simple syntactic sugarings:

– The declaration array [1] r can be written reg r. When accessing arrays
of unit size one writes r instead of r[0].

– Functions without channel parameters can omit their square brackets com-
pletely (both in definition and calls).

– A case-statement is translated into nested conditionals in the usual way.

The static construct, which is used to introduce local definitions, is provided
purely for syntactic convenience. It has no dynamic significance (and hence must
not be confused with the kind of dynamic channel-creation present in the π-
calculus.) We note the similarity between SAFL+’s static construct and the C
language’s static storage-class.

2.1 Resource Awareness

Our approach is to model hardware as a fixed set of communicating and (pos-
sibly) shared resources. As can be seen from Figure 1, a program consists of a
series of resource declarations. There are three different types of resource, each
of which addresses a key element of hardware design:

Resource type Purpose Hardware Representation

Function Computation General Purpose Logic
Channel Communication Buses, Wires and Control Logic
Array Storage Memories or Registers

We say that SAFL+ is resource-aware since each declaration, d, (be it a
function, channel or array declaration) corresponds to a single hardware block,
Hd. Multiple references to d at the source-level (e.g. multiple calls to a function
or multiple assignments to an array) correspond to the sharing of Hd at the
circuit-level.

A call, f(~x)[~c], corresponds to: (i) acquiring mutually exclusive access to
resource, Hf ; (ii) passing data ~x and channel-parameters ~c into Hf ; (iii) waiting
for Hf to terminate; and (iv) latching1 the result from Hf ’s shared output.

For a concrete example see the SAFL+ code fragment in Section 2.3 which
describes a lock shared between functions f1 and f2. Synthesising this example
leads to three resources: Hf1, Hf2 and Hlock. Note that Hlock is shared between
resources Hf1 and Hf2.

Sharing issues, such as ensuring mutually exclusive access to resources, are
dealt with automatically by our compiler. In [15] we describe how arbiters are
generated to protect shared resources from concurrent accesses. A global analysis
is presented which allows redundant arbiters to be optimised away.

Resource-awareness means that, although a SAFL+ compiler is free to opti-
mise the internals of fun definitions, it must respect the circuit structure spec-
ified by the programmer (i.e. one declaration = one hardware-level resource).
We apply source-to-source program transformation as a pre-compilation phase
to express resource sharing/duplication and other area-time tradeoffs [14]. Al-
though such transformations are applied manually at the moment, tools to assist

1 A data-flow analysis is used to optimise these latches away under certain circum-
stances [17].

with the transformation process and automatically explore the design space are
currently being developed.

2.2 Channels and Channel Passing

SAFL+ provides synchronous channels to allow parallel threads to synchronize
and transfer information. Channels can be used to transfer data locally within
a function, or globally, between concurrently executing functions.

Our channels generalise Occam [6] and Handel-C [1] channels in a number of
ways: SAFL+ channels can have any number of readers and writers, are bidirec-
tional and can connect any number of parallel processes. As in the π-calculus,
if there are multiple readers and multiple writers all wanting to communicate
on the same channel then a single reader and a single writer are chosen non-
deterministically.

At the hardware level a channel is implemented as a many-to-many com-
munications bus supporting the atomic transfer of single values between readers
and writers (see Section 3). No language-support is provided for bus-transactions

(e.g. lock the bus for 20 cycles and write the following sequence of data values
onto it). In Section 2.3 a SAFL+ code fragment is presented which shows how
such transactions can be implemented by using explicit locking.

Channels declared as external are used for I/O: writing to an external chan-
nel corresponds to an output action; reading an external channel corresponds to
reading an input. There is no synchronisation on external channels although
writes are guaranteed to occur under mutual exclusion. For example, for an ex-
ternal channel c, the only two possible output sequences occurring as a result of
evaluating expression (c!2 || c!3) are 〈2, 3〉 or 〈3, 2〉. (See Section 4).

The following code fragment illustrates how channel passing is supported by
SAFL+:

fun Accumulate(state) [c] =

let val read_value = c?

in if read_value=0 then state

else Accumulate(state+read_value) end

fun GenNumbers(state) [c] =

c!state; if c=0 then () else GenNumbers(state-1)

fun sum(x) =

static channel connect

in GenNumbers(x) [connect] || Accumulate(0)[connect] end

This example defines two resources parameterised over channel parameters:

– Accumulate reads integers from a channel, returning their total when a 0 is
read;

– GenNumbers writes a decreasing stream of integers to a channel, terminating
when 0 is reached.

The function, sum(x) calculates the sum of the first x integers by composing the
two resources in parallel and linking them with a common channel, connect.
(Note that the parallel composition operator, ||, waits for both its components
to terminate before returning the value of the rightmost one.)

Channel parameters are not passed on recursive calls. Once a function re-
source, f , has been acquired by means of an external (i.e. non-recursive) call,
f(~x)[~c], f ’s channel parameters remain bound to ~c until f terminates. See the
operational semantics presented in Section 4 for a more precise description.

2.3 The Motivation for Channel Passing

By parameterising functions over both data and channel parameters, the SAFL+
fun definition becomes a powerful abstraction mechanism, encapsulating a wide
range of structuring primitives treated separately in existing HDLs:

– Pure functions can be expressed by omitting channel parameters:
fun f(x,y) = ...

– Structural-level blocks (cf . Verilog’s module construct) can be expressed as
non-terminating fun declarations parameterised over channels:

fun module() [in1,in2,out] = ...; module()
– HardwareC process declarations can be expressed as non-terminating fun

definitions (possibly without channel or data parameters):
fun process() = ...; process()

– HardwareC procedures can be expressed as fun declarations that return a
unit result:

fun procedure(x,y) = ...; ()

As well as unifying a number of common abstraction primitives, SAFL+ also
supports a style of programming not exploited by existing HDLs. Recall the
definition of Accumulate in Section 2.2. The Accumulate function can be seen
as a hybrid between a structural-level block (since it is parameterised over a
port, c) and a function (since it terminates, returning a result). More generally,
by passing in locally defined channels, a caller, f , is able to synchronise and
communicate with its callee, g, during g’s execution. For example, consider the
following SAFL+ code which declares a lock shared between functions f1 and f2.
The lock is used to enforce mutual exclusion between critical regions contained
within the function bodies:

fun lock()[acquired, release] = acquired!(); release?

fun f1() = static channel go channel done

in (lock()[go,done] ||

(go?; (* code for f1’s critical region *)

done!())) end

fun f2() = static channel go channel done

in (lock()[go,done] ||

(go?; (* code for f2’s critical region *)

done!())) end

The lock function is parameterised over two channels: acquired is signalled as
soon as lock starts executing, indicating to the caller that the lock has been
acquired; release is used by the caller to signal that it has finished with the
lock (at which point lock terminates). Recall that resource-awareness means that
lock represents a single resource shared by functions f1 and f2: the compiler
ensures that only one caller can acquire it at a time. By passing in locally defined
channels, functions f1 and f2 are able to communicate with lock during its
execution. (Note that, since SAFL+ channels are bidirectional, we could use a
single control channel to signal both acquisition and release requests; we use two
channels merely for expository purposes.)

3 Translating SAFL+ to Hardware

In [17] we describe in detail how we translate the functional subset of SAFL+
into synchronous hardware. The basic principle involves translating each function
definition into a single hardware block consisting of logic to serialise concurrent
accesses and registers to latch arguments. Tail-recursive calls2 are translated into
feedback loops at the circuit level.

Here we extend this by showing how the non-functional features (i.e. channels
and arrays) can be integrated into our existing framework. As in [17] we adopt
the graphical convention that thick lines represent data-wires and thin lines
represent control signals.

A channel is translated into a shared bus surrounded with the necessary
control logic to arbitrate between waiting readers and writers. Figure 2 shows
channel control circuitry in a case where there are two readers and three writers.
Since we are primarily targetting FPGAs we choose to multiplex data onto the
bus rather than using tri-state buffers. To perform a read operation the reader
signals its read-request and blocks until the corresponding read-acknowledge
is signalled. We adopt the convention that the read-acknowledge line remains
high for one cycle during which time the reader samples the data from the
channel. To perform a write operation the writer places the data to be written
onto a channel’s data-input and signals the corresponding write-request line; the
writer blocks until the corresponding write-acknowledge is signalled. Our current
compiler synthesises static fixed-priority arbiters to resolve multiple simultane-
ous read requests or multiple simultaneous write requests. However, since the
SAFL+ semantics do not specify an arbitration policy, future compilers are free
to exploit other selection mechanisms.

Our SAFL+ compiler performs a static flow-analysis to determine which
actual channels (those bound directly by the channel construct) a given formal-
channel-parameter may range over. This information enables the compiler to
statically connect each channel operation (read or write) to every possible actual
channel that it may need to access dynamically. At the circuit level channel values
are represented as small integers which are passed as additional parameters on
a function call.

2 The only form of recursion allowed is tail-recursion.

R

S D

R

S D

R

S D

R

S D

R

S D

Data
Inputs Bus

Channel

Read
Acks

Write
Acks

Write
Reqs

Read
Reqs

MUX

Priority Selector
Priority Selector

Fig. 2. A Channel Controller. The synchronous RS flip-flops (R-dominant) are used
to latch pending requests (represented as 1-cycle pulses). Static fixed priority selectors
are used to arbitrate between multiple requests. The 3 data-inputs are used by the
three writers to put data onto the bus.

Our intermediate code [17] is augmented with Read and Write nodes rep-
resenting channel operations. In cases where our flow-analysis detects that a
channel operation may refer to a number of possible actual channels, multiplex-
ers and demultiplexers are used to dynamically route to the appropriate channel.
Read nodes have a control-input (used to signal the start of the operation), a
control-output (used to signal the completion of the operation), a channel-select-
input (used to select which actual channel to read from) and a data-output (the
result of the read operation). Similarly Write nodes have a control-input, a
control-output, a channel-select-input and a data-output. As described in [17],
our current compiler represents control events as 1-cycle pulses. Figure 3 shows
(i) a Read node connected to three channels and (ii) a Write node connected
to two channels.

We extend the translation of fun declarations described in [17] to include ex-
tra registers to latch channel-parameters. At the circuit-level channel-parameters
are fed into the select lines of the multiplexers and demultiplexers seen in Fig-
ure 3. In this example ‘ChSel’ would be read directly from the registers storing
the enclosing function’s channel-parameters.

Arrays are represented as RAMs wrapped up in the necessary logic to arbi-
trate between multiple concurrent accesses. Our compiler translates array dec-
larations, array [i] r, into SAFL+ function definitions with signature:

read
reqs

read
acks

write
reqs

write
acks

DMX

Control-out

ChSel

(ii)

Control-in ChSel Data-out Control-out Data-inControl-in

(i)

Chan

Chan

Chan

Chan

Chan

DMX MUX

CBs

DI

DI

Fig. 3. (i) A Read node connected to 3 channels; (ii) A Write node connected to
2 channels. Each of the boxes labelled ‘Chan’ is a channel (as in Fig. 2). Although
each such channel may well have other readers/writers these are not shown in the
figure. The data-wires labelled ‘CB’ are the channel busses, those labelled ‘DI’ are
channels’ data-inputs (multiplexed onto the channel busses—see Fig. 2). ‘ChSel’ is the
channel-select-input. Note that (although not shown in this figure) channel busses may
be shared among many readers. The dotted line represents the boundary between the
resource performing the channel operation and the channels themselves.

fun r (wr_select:bit, data:int, addr:int) : int

Calling r always returns the value stored at memory location addr. If wr select

is 1 then location addr is updated to contain data. Hence array assignments,
r[e1] := e2, are translated into function calls of the form r(1,e2,e1) and
array accesses, r[e], are translated into calls of the form r(0,0,e). Treating
arrays as SAFL+ functions in this way allows us to use the compiler’s existing
machinery to synthesise the necessary logic to serialise concurrent accesses to the
array and latch address lines. The compiler automatically generates the body of
r, which consists solely of RAM.

4 Operational Semantics for SAFL+

In this section we define the meaning of the SAFL+ language formally through
an operational semantics. Although, at first sight, the semantics may seem theo-
retical and far-removed from hardware-implementation we argue that this is not
the case. It is worth pointing out that many of the symbols in Figure 7 have a di-
rect correspondence to circuit-level components. For example, channel resources,
〈v〉c (see below), represent channel controller circuits (as shown in Figure 2) and
the (Call) rule (see Figure 7) corresponds directly to transferring data into the
callee’s argument registers (circuits corresponding to this are presented in [17]).

A SAFL+ program consists of a series of function definitions of the form:

fun f (x1, . . . , xk) [c1, . . . , cj] = bf

We write bf for the body of function, f , x1, . . . , xk for formal parameters and
c1, . . . , cj for channel parameters. For the sake of brevity, we define ~x to mean
x1, . . . , xk and, similarly, ~c to mean c1, . . . , cj .

Due to the static nature of SAFL+, we can simplify matters by assuming
that: (i) SAFL+ programs have been α-converted to make all variable names
distinct; and (ii) scope-flattening has been performed, bringing local declarations
to the top level and eliminating static statements. (Note that bringing a locally
defined function to the top level may require extra arguments to be added to
the function in order to pass in values for its free variables.)

We give the semantics by describing how one program state, P , evolves into
another, say Q, by means of a transition: P

α
→ Q, where α represents an optional

I/O action taking one of the following forms:

c̄〈v〉 Output v on external channel c

c(v) Read a value v from external channel c

go(~v) Pass parameters ~v into the main function
done(v) Read result v from the main function

Note that we use a bold-face c to range over external channels (in contrast to c,
which ranges over non-external channels).

A program state consists of a parallel composition of function resources,
channel resources and array resources (see Figure 4). Our presentation borrows
notation and ideas from Marlow et al [10].

Each non-external channel declaration, channel c, corresponds to a channel
resource. When an empty channel resource (written 〈〉c) reacts with a waiting
writer a value, v, is transferred and c becomes full (written 〈v〉c). On reacting
with a waiting reader, the value is consumed and the c enters an acknowledge
state (written 〈Ack〉c). The Ack interacts with the writer, notifying it that com-
munication has taken place and returning c to the empty state, 〈〉c. The explicit
use of Ack models the synchronous nature of SAFL+ channels ensuring that a
writer is blocked until its data has been consumed by a reader.

Array resources, [Si]r, correspond to array declarations, array [i] r. The
contents of the array, Si, is a function mapping indexes 0 . . . (i− 1) onto values.
We write Si{j 7→ v} to denote the function which is as Si but maps index j onto
value v. Accessing elements outside the bounds of an array leads to undefined
behaviour. To reflect this we define Si(j) to be an undefined value if j ≥ i.
Furthermore if j ≥ i then Si{j 7→ v} represents an undefined state mapping
indexes 0 . . . (i − 1) onto undefined values.

Each SAFL+ function declaration, fun f (~x) [~c] = bf , is represented by
a function resource. At any given time a function resource may be busy (per-
forming a computation) or available (waiting to perform a computation). An
available function resource, f , is written

�
f , signifying that f is not in use; a

busy function resource takes the form (|e|)f signifying that f is currently in eval-

uation state e. The syntax of evaluation states (see Figure 4) is essentially the
same as the syntax of SAFL+ expressions augmented with the Wg construct
which represents waiting for a result from function resource g. To save space,
conditional expressions, if e1 then e2 else e3, are shortened to e1 . e2 : e3.

P ← (|e|)f (busy function)
| � f (available function)
| 〈〉c (empty channel)
| 〈v〉c (full channel, holding value v)
| 〈Ack〉c (channel in acknowledge state)
| P | P (parallel composition)

e ← v (value)
| Wg (awaiting result from g)
| {l1 = e, . . . , lk = e} | e.l (as in Fig. 1)
| x | f(e, . . . , e)[c1, . . . , cn] | a(e, . . . , e) . . .
| let (x1, . . . , xk) = (e, . . . , e) in e . . .
| e . e : e | c ! e | c? | e ‖ e . . .
| e; e | x[e] := e | x[e] (as in Fig. 1)

v ← i (integer, i ∈ N)
| () (unit)

Fig. 4. The Syntax of Program States, P , Evaluation States, e, and values, v

P | Q ≡ Q | P (Comm)
P | (Q | R) ≡ (P | Q) | R (Assoc)

P
α
−→ Q

P | R
α
−→ Q | R

(Par)
P ≡ P ′ P ′ α

−→ Q′ Q′ ≡ Q

P
α
−→ Q

(Equiv)

Fig. 5. Structural congruence and structural transitions

As with the Chemical Abstract Machine [3] program states can be viewed as
a “solution” of reacting resources. We formalise this notion in the standard way
by defining structural congruence, ≡, to be the least congruence which satisfies
the (Comm) and (Assoc) equations of Figure 5. Rule (Par) allows transitions
within parallel compositions and (Equiv) makes it possible to use the structural
congruence relation to bring different parts of the program state together.

� ← [·]

| f(� , e2, . . . , ek) | . . . | f(e1, . . . , ek−1, �)

| a(� , e2, . . . , ek) | . . . | a(e1, . . . , ek−1, �)

| {n1 = � , n2 = e2, . . . , nk = ek}

. . .

| {n1 = e1, . . . , nk−1 = ek−1, nk = � }

| let (x1, . . . , xk) = (� , e2, . . . , ek) in e

. . .

| let (x1, . . . , xk) = (e1, . . . , ek−1, �) in e

| r[�] | r[�] := e | r[e] := � | � .l

| � . e1 : e2 | � ; e | � ‖ e | e ‖ � | c ! �

Fig. 6. A context, � , defining which sub-expressions may be evaluated in parallel

SAFL+ is an implicitly parallel language—an expression may contain a num-
ber of sub-expressions which can be evaluated concurrently. To formalise this
notion we use a context ,

�
, to highlight the parts of an evaluation state which

can be evaluated concurrently (see Figure 6). Intuitively a context is an evalua-
tion state

�
[·] with a hole [·] into which we can insert an evaluation state, e, to

derive a new evaluation state
�
[e].

A useful mental model is to consider a frontier of evaluation which is defined
by

�
and advanced by applying the transition rules (see Section 4.1 and Figure 7).

4.1 Transition Rules

For clarity, we present the transition rules for SAFL+ in two parts: Figure 7(a)
gives the rules for SAFL+ without channel passing. Section 4.2 explains how the
rules can be modified to handle channel passing.

Substitution of values, v1 . . . vn, for variables, x1 . . . xn in an evaluation state,
e, is written, {v1/x1, . . . , vn/xn}e, and for convenience abbreviated to {~v /~x }e.

The rules in Figure 7 are divided into six categories:

– (Call) and (Return) deal with interaction between separate functional re-
sources.

– (Ch-Write), (Ch-Read) and (Ch-Ack) model communication over synchronous
channels.

– (Input) and (Output) deal with I/O through reading and writing external
channels.

– (Ar-Write) and (Ar-Read) handle writing and reading of array resources
respectively.

– (Start) and (End) correspond to externally invoking and receiving the result
from the main function.

– The remainder of the rules deal with local computation within a function
resource.

Note that the left hand side of the (Tail-Rec) rule is not enclosed in a context.
This reflects the fact that tail recursive calls cannot occur in parallel with any
other expressions; hence a context is unnecessary.

4.2 Semantics for Channel Passing

To deal with channel passing, function resources need to store the channel pa-
rameters passed from an external call. We use the notation (| · |)~c

f to represent a
function resource which has been called with actual channel parameters, ~c . For
convenience we sometimes omit the channel parameters from a rule, defining
(|e1|)f → (|e2|)g to mean (|e1|)

~c
f → (|e2|)

~c
g .

The (Call), (Ret) and (Tail-Rec) rules are modified for channel passing as
shown in Figure 7(b).

4.3 Non-determinism

There are three sources of non-determinism in SAFL+ specifications. Firstly,
when expressions are composed in parallel, no order of evaluation is specified.
Thus, if two parallel expressions have conflicting side-effects, non-determinism
is introduced. For example, (x := 3 || x := 4) may terminate in a state in
which x is either 3 or 4. Secondly, as in the π-calculus, channels with multiple
readers and writers select one reader and one writer non-deterministically. For
example (c!2 || c!5 || (c? - c?)) could evaluate to either −3 or 3. Finally,
reading or writing elements outside the bounds of an array leads to undefined
behaviour. Recall that Si(j) returns a random value if j ≥ i and, similarly,
assigning to an out-of-bounds element corrupts the entire array.

Although we could make SAFL+ completely deterministic we choose not to
for the following reasons:

– An unspecified evaluation order for function calls and let-definitions allows
more freedom for the compiler to exploit parallelism, leading to the genera-
tion more efficient hardware.

– Imposing Occam-style restrictions on SAFL+ channels (i.e. unidirectional,
connecting exactly two processes) would reduce the expressivity of SAFL+.
To see an example of this consider the problem of merging data from two
separate channels onto a single channel. Since SAFL+ does not provide an
explicit non-deterministic choice operator (cf . Occam’s ALT construct), the
only way to represent such a system is to exploit a multiple-writer, single-
reader channel.

– Array bounds checking incurs a serious penalty since every array access
requires a comparison. Not only would this reduce the performance of the
generated hardware, but the extra comparators required may significantly
increase the area (gate-count) of the circuit. In general we feel that this is
unacceptable.

(a) Rules for SAFL+ without channel passing:

(|� [g(v1, . . . , vk)]|)f | � g −→ (| � [Wg]|)f | (|{~v /~x }bg|)g f 6= g (Call)

(|v|)f | (| � [Wf]|)g −→ � f | (|� [v]|)g (Return)

(| � [c ! v]|)f | 〈〉c −→ (| � [Wc]|)f | 〈v〉c (Ch-Write)

(|� [c?]|)f | 〈v〉c −→ (| � [v]|)f | 〈Ack〉c (Ch-Read)

(| � [Wc]|)f | 〈Ack〉c −→ (| � [()]|)f | 〈〉c (Ch-Ack)

(|� [c ! v]|)f
c̄〈v〉
−→ (| � [()]|)f (Output)

(| � [c?]|)f
c(v)
−→ (| � [v]|)f (Input)

(| � [r[v1] := v2]|)f | [Si]r −→ (| � [()]|)f | [Si{v1 7→ v2}]r (Ar-Write)

(| � [r[v]]|)f | [Si]r −→ (| � [Si(v)]|)f | [Si]r (Ar-Read)

� main
go(~v)
−→ (|{~v /~x }bmain|)main (Start)

(|v|)main
done(v)
−→ � main (End)

(|� [a(v1, . . . , vk)]|)f −→ (| � [v]|)f v = a(v1, . . . , vk) (PrimOp)

(|� [{. . . , l = v, . . .}.l]|)f −→ (| � [v]|)f (RecSelect)

(| � [0 . e1 : e2]|)f −→ (| � [e2]|)f (CFalse)

(|� [n . e1 : e2]|)f −→ (| � [e1]|)f n 6= 0 (CTrue)

(|� [let ~x = ~v in e]|)f −→ (| � [{~v /~x }e]|)f (Let)

(| � [v; e]|)f −→ (| � [e]|)f (Seq)

(|� [v1 ‖ v2]|)f −→ (| � [v2]|)f (Par)

(|f(v1, . . . , vk)|)f −→ (|{~v /~x }bf |)f (Tail-Rec)

(b) Modifications for Channel Passing:

(| � [g(v1, . . . , vk)[d1, . . . , dj]]|)
~c′

f | � g −→ (|� [Wg]|)
~c′

f | (|{~d /~c ,~v /~x }bg|)
~d
g (Call)

(|v|)~c
f | (| � [Wf]|)

~d
g −→ � f | (| � [v]|)

~d
g (Ret)

(|f(v1, . . . , vk)|)
~c′

f −→ (|{~c′ /~c , ~v /~x }bf |)
~c′

f (Tail-Rec)

Fig. 7. Transition Rules for SAFL+

5 Conclusions and Further Work

This paper has introduced and formally defined the SAFL+ language, moti-
vating its use for hardware description and synthesis. We argue that the major
advantages of SAFL+ over the majority of existing high-level synthesis languages
are:

– The combination of resource-awareness and channel-passing makes SAFL+
function declarations a very powerful abstraction mechanism. Both struc-
tural blocks and functions can be seen as special cases of SAFL+ fun dec-
larations.

– The high-level properties of SAFL+ support analysis and transformation.
– SAFL+ has a formally defined semantics.

The project is in its early stages. Although we have implemented a silicon
compiler for SAFL+ and tested it on small examples, we have yet to use the
system to build a large system-on-a-chip design. This is very high-priority for
our future work. Using SAFL+ to construct a large hardware design will test
both the expressivity of the language and the efficiency of our compiler.

The translation of SAFL+ to hardware given in this paper (Section 3) out-
lines one of many possible implementation techniques. In future work we plan to
investigate the translation of SAFL+ to globally-asynchronous-locally-synchronous
(GALS) hardware. Our idea involves mapping function-resources into separate
clock domains and extending our compiler to automatically instantiate the nec-
essary inter-clock-domain interfaces.

We are currently developing an interactive analysis and transformation tool
for SAFL+ programs. Although still in the early stages of development, we hope
to provide the beginnings of a high-level equivalent to the SIS logic-synthesis
tool [16].

Acknowledgement

This work was supported by (UK) EPSRC grant GR/N64256 “A Resource-
Aware Functional Language for Hardware Synthesis”; the first author was also
sponsored by AT&T Research Laboratories Cambridge.

References

1. Handel-C language datasheet. Available from Celoxica Ltd:
http://www.celoxica.com/.

2. The Jazz Synthesis System. See: http://www.exentis.com/jazz.
3. Berry, G., and Boudol, G. The chemical abstract machine. Theoretical Com-

puter Science 96 (1992), 217–248.
4. Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. Lava: Hardware descrip-

tion in Haskell. In Proceedings of the 3rd International Conference on Functional
Programming (1998), SIGPLAN, ACM.

5. Hoe, J., and Arvind. Hardware synthesis from term rewriting systems. In Pro-
ceedings of X IFIP International Conference on VLSI (1999).

6. Inmos (Ltd.). Occam 2 Reference Manual. Prentice Hall, 1998.
7. Johnson, S., and Bose, B. DDD: A system for mechanized digital design deriva-

tion. Tech. Rep. 323, Indiana University, 1990.
8. Ku, D., and De Micheli, G. HardwareC—a language for hardware design (ver-

sion 2.0). Tech. Rep. CSL-TR-90-419, Stanford University, 1990.
9. Li, Y., and Leeser, M. HML, a novel hardware description language and its

translation to VHDL. Transactions on VLSI Systems, 1 (February 2000).
10. Marlow, S., Peyton Jones, S., Moran, A., and Reppy, J. Asynchronous

exceptions in Haskell. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI) (2001), SIGPLAN, ACM.

11. Matthews, J., Cook, B., and Launchbury, J. Microprocessor specification in
Hawk. In Proceedings of the IEEE International Conference on Computer Lan-
guages (1998).

12. Milner, R. The polyadic π-calculus: A tutorial. Tech. Rep. ECS-LFCS-91-180,
University of Edinburgh, October 1991.

13. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of
Standard ML (Revised). MIT Press, 1997.

14. Mycroft, A., and Sharp, R. A statically allocated parallel functional language.
In Proceedings of the International Conference on Automata, Languages and Pro-
gramming (2000), vol. 1853 of LNCS, Springer-Verlag.

15. Mycroft, A., and Sharp, R. Hardware/software co-design using functional
languages. In Proceedings of TACAS (2001), vol. 2031 of LNCS, Springer-Verlag.

16. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha,
A., Savoy, H., Stephan, P., Brayton, R., and Sangiovanni-Vincentelli, A.
SIS: A system for sequential circuit synthesis. Tech. Rep. UCB/ERL M92/41, De-
partment of Electrical Engineering and Computer Science, University of California,
Berkeley, May 1992.

17. Sharp, R., and Mycroft, A. The FLaSH compiler: Efficient circuits from func-
tional specifications. Tech. Rep. tr.2000.3, AT&T Laboratories Cambridge, 2000.

18. Sharp, R., and Mycroft, A. Soft scheduling for hardware. In Proceedings of the
8th International Static Analysis Symposium (2001), vol. 2126 of LNCS, Springer-
Verlag.

19. Sheeran, M. muFP, a language for VLSI design. In Proceedings of the ACM
Symposium on LISP and Functional Programming (1984).

