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Abstract. We survey the work done so far in the FLaSH project (Func-
tional Languages for Synthesising Hardware) in which the core ideas are
(i) using a functional language SAFL to describe hardware computa-
tion; (ii) transforming SAFL programs using various meaning-preserving
transformations to choose the area-time position (e.g. by resource dupli-
cation/sharing, specialisation, pipelining); and (iii) compiling the resul-
tant program in a resource-aware manner (keeping the gross structure
of the resulting program by a 1–1 mapping of function definitions to
functional units while exploiting ease-of-analysis properties of SAFL to
select an efficient mapping) into hierarchical RTL Verilog.
After this survey we consider how SAFL allows some of the design space
concerning pipelining and superscalar techniques to be explored for a
simple processor in the MIPS style. We also explore how ideas from
partial evaluation (static and run-time data) can be used to unify the
disparate approaches in Hydra/Lava/Hawk and SAFL and to allow pro-
cessor specialisation.

1 Introduction

There are many formalisms which allow one to specify circuits. Commercially, the
two most important are VHDL and Verilog. From the perspective of this work,
they can be regarded as equivalent. They are rich languages which have multiple
interpretations according to the intended use; different subsets are used accord-
ing to the interpretation. It is worth summarising the interpretations/subsets
here since we wish to use the terminology later:

Structural (netlist) subset: programs are seen as specifying the basic system
components and their interconnecting wires.

RTL subset: extra primitives are provided to wait for events (e.g. a positive
clock edge), compute expressions and transfer data between registers.



Behavioural subset: as well as the primitives available in the RTL subset,
programs at the behavioural-level can exploit higher-level constructs such as
sequencing, assignment and while-loops.

Simulation interpretation: in this interpretation the whole language is ac-
ceptable; programs are seen as input to a discrete event simulator (useful for
debugging the above forms).

One reason for the success of VHDL and Verilog has been their ability to repre-
sent circuits composed partly of structural components and partly of behavioural
components (like embedding assembly code in a higher-level language). Another
benefit is that the languages provide a powerful set of non-synthesisable con-
structs which are useful for simulation purposes (e.g. printing values to the
screen).

Large investments have been made in algorithms and optimisations for syn-
thesising hardware from Verilog/VHDL. However, the optimisations typically
depend on the source program being standard in some sense (e.g. multiple com-
ponents sharing a common clock event). Often one finds that less standard de-
signs such as those forming asynchronous systems may not be synthesisable by
a given tool, or worse still that a necessary asynchronous hardware cell required
by a netlist is not in a vendor’s standard cell library.

RTL-compilers, which have had a significant impact on the hardware design
industry, translate RTL specifications to silicon (via a netlist representation).
Tasks performed by an RTL-compiler include Logic synthesis—the translation
of arithmetic and boolean expressions to efficient combinatorial logic and Place
and Route—deciding where to position components on a chip and how to wire
them up.

More recently behavioural synthesisers have become available. Behavioural
synthesis (sometimes referred to as high-level synthesis) is the process of trans-
lating a program in a behavioural subset into a program in the RTL subset.
Behavioural synthesis is often divided into three separate tasks [14]:

– Allocation is typically driven by user-supplied directives and involves choos-
ing which resources will appear in the final circuit (e.g. three adders, two
multipliers and an ALU).

– Binding is the process of assigning operations in the high-level specification
to low-level resources—e.g. the + in line 4 of the source program will be
computed by adder 1 whereas the + in line 10 will be computed by the ALU.

– Scheduling involves assigning start times to operations in the flow-graph such
that no two operations will attempt to access a shared resource simultane-
ously. Mutually-exclusive access to shared resources is ensured by statically
serialising operations during scheduling.

It is our belief that even the higher-level behavioural forms of VHDL and
Verilog offer little in the way of abstraction mechanisms. We justify this claim
by observing that, when writing in VHDL or Verilog, low-level implementa-
tion details and circuit structure tend to become fixed very early in the design
process. Another example is that the protocol for communication between two



functional units (often including exact timing relationships) is spread between
their implementations and therefore is difficult to alter later. We develop this
argument further in [25].

The problem we wish to identify is the conflict between (i) being able to make
late, sweeping, changes to a system’s implementation (though not to its logical
specification); and (ii) the efficiency gained from low-level features (such as those
found in VHDL and Verilog.) It is worth noting an analogy with programming
languages here: efficiency can be gained by exploiting low-level features (e.g.
machine code inserts or enthusiastic use of pointers) but the resulting system
becomes harder for compilers or humans to analysis and optimise.

A principal aim of our work in the FLaSH project (Functional Languages for
Synthesising Hardware), which started in 1999 at AT&T Research Laboratories
Cambridge, was to adopt an aggressively high-level stance—we wanted to design
a system in which (i) the programming language is clean (no ‘implementation-
defined subsets’); (ii) the logical structure can be specified but its realisation
as physical structure can easily be modified even at late stages of design; and
(iii) programs are susceptible to compiler analysis and optimisation facilitat-
ing the automatic synthesis of efficient circuits. We envisaged a single design
framework in which we could, for example, select between synchronous and asyn-
chronous design or rework the exact number of functional units, how they are
shared and even the interconnection protocol (e.g. changing parallel-on-ready-
signal to serial-starting-on-next-clock-tick) at any stage in the design process
(‘late-binding’).

Of course the full aim as stated above has not yet been reached, but we have
designed and implemented a language, SAFL ‘Statically Allocated Parallel Func-
tion Language’ embodying at least some of the principles above. One additional
principle which we consider important about SAFL, or at least its intended im-
plementation, is that it is resource-aware. By this we mean that its constructs
map in a transparent way to hardware blocks, so that a program’s approximate
area-time consumption is clear from the SAFL source—compare the way that
the space and time complexity of a C program is reasonably manifest in the
program source because its primitives are associated with small machine code
sequences.

The FLaSH project’s optimising compiler translates SAFL into hierarchical
RTL Verilog in a resource-aware manner. Each function definition compiles into
a single hardware block; function calls are compiled into wiring between these
functional blocks. In this framework multiple calls to the same source function
corresponds to resource-sharing at the hardware level. Our compiler automati-
cally deals with sharing issues by inserting multiplexers and static fixed-priority
arbiters where required. Optimisations which minimise these costs have been
implemented.

Accompanying the compiler is a transformer . This tool is intended to make
semantics-preserving transformations on the SAFL source, typically with user-
guidance, to facilitate architectural exploration. Although we have not yet built
the transformer tool, we have published various transformation techniques which



embody a wide range of implementation tradeoffs (e.g. functional unit duplica-
tion/sharing [19] and hardware-software co-design [20]). A key advantage of this
approach is that it factors the current black-box user-view of synthesis tools
(‘this is what you get’) into a source-to-source transformation tool which makes
global changes visible to users followed by a more local-basis compilation tool.

Although a full comparison with other work is given in Section 1.1, we would
like here to draw a distinction between this work and the framework used in
Hydra [22], Lava [2] and Hawk [12]. Our aim in SAFL is to create a high-level
behavioural language which is compiled into RTL Verilog whose compiler acts as
an optimising back-end targeting silicon. SAFL can also run as an ML-style func-
tional language for simulation. The Hydra/Lava/Hawk framework on the other
hand uses the power of the functional language essentially for interconnecting
lower-level components, and thus it is a structural language in our taxonomy.
Note that the use of alternate interpretations of basis-functions (e.g. and, or
etc.) means that Lava programs can be used for simulation as well as synthesis.
We do not wish to claim either work is ‘better’, merely that they address differ-
ent issues: we are looking for an “as high-level as possible” language from which
to synthesise hardware and rely on others’ compilers from RTL downwards; Hy-
dra/Lava/Hawk concentrates on being able to describe hardware at a structural
level (possibly down to geometric issues) in a flexible manner.

Although we have found SAFL a very useful vehicle to study issues of high-
level behavioural synthesis, it is not the final word. In particular the function
model used has a call-and-wait-for-result interface which does not readily inter-
face with external state or multiple clock domains which are essential for a seri-
ous hardware design language. Recent work [25] has demonstrated that adding
process-calculus features, even including restricted channel passing, can add to
the expressive power of SAFL without losing resource-awareness; the resultant
language is called SAFL+ and provides both I/O and interaction with compo-
nents having state. However it is not so clear how much this increased expressive
power costs in terms of the increased complexity of validating source-to-source
transformations.

The following survey section of this paper draws on ideas from our other
work: giving a general overview [18] at the start of the project, examining the
theoretical basis of static allocation with parallelism in SAFL [19], describing the
FLaSH compiler [23], examining hardware-software co-design [20] and studying
the concept (so-called by analogy with soft typing) of soft scheduling [24].

After examining other related work in Section 1.1, the remainder of the paper
is structured as follows: Section 2 introduces the SAFL language, how it might
be compiled näıvely for synchronous hardware, the rôle of resource-awareness,
how analyses aid compiler optimisations and concludes with a look at compiling
to asynchronous or GALS (globally synchronous locally synchronous) hardware.
Section 3 studies how source-to-source transformations at the SAFL level (to-
gether with the resource-awareness assumption) can reposition the hardware
implementation on the area-time spectrum. These ideas are applied in Section 4
when a simple CPU is defined and SAFL transformations demonstrated which



introduce pipeline and superscalar features. Section 5 considers how the ideas in
Hydra/Lava/Hawk of using a functional language to express the structural com-
position of a system can be merged with the SAFL idea of behavioural definition;
this then leads on to a type system and to an investigation of partial evaluation
in hardware. Finally, Section 6 concludes.

1.1 Comparison with Other Work

In the previous section we motivated our work by comparing SAFL to VHDL
and Verilog. We also outlined the differences between our approach and that of
Hydra/Lava/Hawk. This section continues by comparing SAFL with a number
of other hardware design languages and methodologies.

We are not the first to observe that the mathematical properties of functional
languages are desirable for hardware description and synthesis. A number of syn-
chronous dataflow languages, the most notable being Lustre [5], have been used
to synthesise hardware from declarative specifications. However, whereas Lus-

tre is designed to specify reactive systems SAFL describes interactive systems
(this taxonomy is introduced in [6]). Furthermore Lustre is inherently syn-
chronous: specifications rely on the explicit definition of clock signals. This is in
contrast to SAFL which could, for example, be compiled into either synchronous
or asynchronous circuits.

The ELLA HDL is often described as functional. However, although con-
structs exist to define and use functions the language semantics forbid a resource-
aware compilation strategy. This is illustrated by the following extract from the
ELLA manual [17]: “Once you have created a named function, you can use in-
stances of it as required in other functions . . . [each] instance of a function
represents a distinct copy of the block of circuitry.” ELLA contains low-level
constructs such as DELAY to create feedback loops, restricting high-level analysis.
SAFL uses tail-recursion to represent loops at the semantic level; this strategy
makes high-level analysis a more powerful technique.

Languages such as HardwareC [10] and Tangram [1] allow function definitions
to be treated as shared resources. However, we feel that these projects have not
gone as far as us in exploiting the potential benefits of resource-awareness. In
particular:

– SAFL’s dynamic scheduling policy (which relies on resource-awareness) leads
to increased expressivity (and, in some cases, increased efficiency) over the
more conventional static scheduling algorithms employed in HardwareC,
Balsa and Tangram.

– We have developed a number of analyses and optimisations which are only
made possible by structuring hardware as a series of function definitions [24,
23].

– We have investigated the impact of source-to-source transformations on
SAFL and shown that it is a powerful tool for exploring the design-space.
The functional properties of SAFL make it easier to apply transformations.



A number of languages have been developed which provide structural ab-
stractions similar to those available in the Lava/Hawk framework. For example
HML [11] is one such language based on Standard ML [15]; Jazz [9] combines a
polymorphic type-system with object oriented features.

2 SAFL and its Compiler

In this section we introduce the SAFL language and show how it can be mapped
to synchronous hardware. For space reasons, material described more fully else-
where will only be summarised.

2.1 SAFL Language

SAFL has syntactic categories e (term) and p (program). First suppose that c

ranges over a set of constants, x over variables (occurring in let declarations
or as formal parameters), a over primitive functions (such as addition) and f

over user-defined functions. For typographical convenience we abbreviate formal
parameter lists (x1, . . . , xk) and actual parameter lists (e1, . . . , ek) to ~x and ~e

respectively; the same abbreviations are used in let definitions. Then SAFL
programs p are given by recursion equations over expressions e; these are given
by:

e ::= c | x | if e1 then e2 else e3 | let ~x = ~e in e0 |

a(e1, . . . , earity(a)) | f(e1, . . . , earity(f))

p ::= fun f1(~x) = e1; . . . ; fun fn(~x) = en;

It is sometimes convenient to extend this syntax slightly. In later examples
e1 ? e2:e3 is used as an abbreviated form of if-then-else; similarly we use a
case-expression instead of iterated tests; we also write e[n:m] to select a bit-field
[n..m] from the result of expression e (where n and m are integer constants).

There is a syntactic restriction that whenever a call to function fj from
function fi is part of a cycle in the call graph of p then we require the call to be
a tail call.1 Note that calls to a function not forming part of a cycle can occur
in an arbitrary expression context. This ensures that storage for the variables
and temporaries of p can be stored statically—in software terms the storage
is associated with the code of the compiled function; in hardware terms it is
associated with the logic to evaluate the function body.

It is often convenient to assume that functions have been (re-)ordered so that
functions in a strongly connected component of the call graph are numbered
contiguously (we call such strongly connected components function groups [19]).
Apart from calls within groups, functions fi can only call smaller numbered
(j < i) functions fj . It is also convenient to assume that the main entry point

1 Tail calls consist of calls forming the whole of a function body, or nested solely within
the bodies of let-in expressions and consequents of if-then-else expressions.



to be called from the external environment, often written main(), is the last
function fn.

The other main feature of SAFL, apart from static allocatability, is that
its evaluation is limited only by data flow (and control flow at user-defined
call and conditional). Thus, in a let-expression let ~x = (e1, . . . , ek) in e0 or in
a call f(e1, . . . , ek) or a(e1, . . . , ek), all the ei(1 ≤ i ≤ k) are to be evaluated
concurrently. The body e0 of a let is also evaluated concurrently subject only
to data flow. In the conditional if e1 then e2 else e3 we first evaluate (only)
e1; one of e2 or e3 is evaluated after its result is known.

This brings forth one significant interaction between static allocation and
concurrency: in a call such as f(g(x),g(y)) the two calls to g must be seri-
alised, since otherwise the same statically allocated storage (the space for g’s
argument) would be required simultaneously by competing processes. In hard-
ware terms (see next section) a critical region, and arbiter to control entry to it,
is synthesised around the implementation of g [24]. Section 2.3 shows how these
arbiters can often be eliminated from the design while reference [19] discusses
the interaction between static allocation and concurrency in more detail.

Note in the above example f(g(x),g(y)) there is little point in providing
access to g by arbiter—simple compile-time choice of argument order is more
effective. However in a more complicated case, such as f(g(h(x)),g(k(x)))

where execution times for h and k are data-dependent, it can often make better
sense for efficiency to keep run-time arbitration and to invoke first whichever
call to g has its argument complete first, and then to invoke the other.

SAFL uses eager evaluation; we are sometimes asked why, especially given
that Haskell-based tools (e.g. Lava and Hawk) are lazy. The resolution is that
lazy-evaluation is problematic for our purposes. Firstly it is not so clear where
to store the closures for suspended evaluations—simple tail recursion for n it-
erations in Haskell can often require O(n) space; while this can sometimes be
detected and optimised (strictness analysis) the formal problem is undecidable
and so poses a difficulty for language design. Secondly lazy evaluation is in-
herently more sequential than eager evaluation—true laziness without strictness
optimisation always has a single (i.e. sequential) idea of ‘the next redex’.

Of course, a single tail-recursive function can be seen as a non-recursive
function with a while-loop and assignment to parameters.2 By repeatedly inline-
expanding calls and making assignable local definitions to represent formal pa-
rameters, any SAFL program can be considered a nest of while-loops. However
this translation has lost several aspects of the SAFL source: (i) the inlining can
increase program size exponentially; (ii) not only is the association of meaningful
names to loops lost, but the overall structure of the circuit (i.e. the way in which
the program was partitioned into separate functional blocks) is also lost—thus

2 A function group can first be treated as a single function having the disjoint union
of its component functions’ formal parameters and having a body consisting of the
component functions’ bodies enclosed within a case-expression. The case-expression
activates the relevant original function body based on the disjoint union actual pa-
rameter.



resource-awareness is compromised; and (iii) concurrent function calls require a
par construct to implement them as concurrent while-loops thus adding com-
plexity.

2.2 Näıve Translation to Synchronous Hardware

In this section we assume a global clock clk which progresses computation. All
signals apart from clk are clocked by it, i.e. they become valid a small num-
ber of gate propagation delays after it and are therefore (with a suitable clock
frequency) settled before the setup time for the next clk. We adopt the proto-
col/convention that signal wires (e.g. request and ready) are held high for exactly
one pulse.

A simple translation of a SAFL function definition

fun f(~x) = e

is to a functional unit Hf which contains:

– an input register file, r, clocked by clk, of width given by ~x;
– a request signal which causes data to be latched into r and computation of

e to start;
– an output port P , here just specification of output wires to hold the value

of e;
– a ready signal which is asserted when P is valid.

The SAFL primitives are compiled each having an output port and request and
ready control signals; they may use the output ports of their subcomponents:

constants c : the constant value forms the output port and the request signal is
merely copied to the ready signal.

variables x: since variables have been clocked into a register then they can be
treated as constants, save that the output port is connected to the register.

if e1 then e2 else e3: first e1 is computed; when it is ready its boolean output
routes a request signal either to e2 or to e3 and also routes the ready signal
and output port of e2 or e3 to the result.

let ~x = ~e in e0: the ~e are computed concurrently (all their requests are acti-
vated); when all are complete e0 is activated. Note that the results of the ~e

are not latched.
built-in function calls a(~e): these are expanded in-line; the ~e are computed

concurrently and their outputs placed as input to the logic for a; when all
are complete this logic is activated;

user function calls g(~e): in the case that the called function only has one
call (being non-recursive) the effect is similar to a built-in call—the ~e are
computed concurrently and their outputs connected as to the input register
file for g; when all are complete the request for g is activated; its output port
and ready signal form those for g(~e). More complex function calls require
more sophisticated treatment—see below.



The above explanation of calls to user-defined functions was incomplete in
that it did not explain (i) how to implement a recursive call (SAFL restricts
these to tail calls) nor (ii) how to control access to shared function blocks.

In the former case, the tail call g(~e) merely represents a loop (see below for
mutual recursion); hence hardware is generated to route the values of ~e back to
the input register for g and to re-invoke the request signal for the body of g when
all the ~e have completed. In case (ii) we need to arbitrate between the possibly
concurrent activation of g by this call and by other calls. The solution is to build
a (synchronous) arbiter which: accepts request lines from the k call sites and
keeps a record of which (at most one) of these have a call active. When one or
more requests are present and no call is active, an implementation-defined request
is selected and its values routed to the input register for g. On completion of g

the ready signal of its body is routed back to the appropriate caller; the result
value port can simply be connected to all callers.

One final subtlety in this compilation scheme concerns the values returned
by functions invoked at multiple call sites (here not counting internal recursive
calls). Consider a SAFL definition such as

f(x,y) = g(h(x+1),k(x+1),k(y))

where there are no other calls to h and k in the program. Assuming h clocks x+1
into its input register, then the output port Ph of h will continue to hold its value
until it is clocked into the input register for g. However, assuming we compute the
value of k(y) first, its result value produced on Pk will be lost on the subsequent
computation of k(x+1). Therefore we insert a clocked permanisor register within
the hardware functional unit, Hf corresponding to f(), which holds the value of
k(y) (this should be thought of as a temporary used during expression evaluation
in high-level languages). In the näıve compilation scheme we have discussed so
far, we would insert a permanisor register for every function which can be called
from multiple sites; the next section shows how static analysis can avoid this.

Adding permanisor registers at the output of resources, like k above, which
may become valid and then invalid during a single call (to f above) explains
our ability to avoid latching variables defined by let—permanisors have already
ensured that signals of let-bound variables remain valid as long as is needed.
The full details of the compilation process are described in [23].

2.3 Optimised Translation to Synchronous Hardware

Our compiler performs a number of optimisations based on whole-program anal-
ysis which improve the efficiency of the generated circuits (both in terms of time
and area). This section briefly outlines some of these optimisations and refers
the reader to papers which describe them in detail.

Removing Arbiters: Recall that our compiler generates (synchronous) ar-
biters to control access to shared function-blocks. In some cases we can infer
that, even if a function-block is shared, calls to it will not occur simultaneously.



For example, when evaluating f(f(x)) we know that the two calls to f must
always occur sequentially since the outermost call cannot commence until the
innermost call has been completed.

Whereas conventional high-level synthesis packages schedule access to shared
resources by statically serialising conflicting operations, SAFL takes a contrast-
ing approach: arbiters are automatically generated to resolve contention for
all shared resources dynamically; static analysis techniques remove redundant
scheduling logic. We call the SAFL approach soft scheduling to highlight the
analogy with Soft Typing [4]: the aim is to retain the flexibility of dynamic
scheduling whilst using static analysis to remove as many dynamic checks as
possible. In [24] we compare and contrast soft scheduling to conventional static
scheduling techniques and demonstrate that it can improve both the expressivity
and efficiency of the language.

One of the key points of soft scheduling is that provides a convenient compro-
mise between static and dynamic scheduling, allowing the programmer to choose
which to adopt. For example, compiling f(4)+f(5) will generate an arbiter to
serialise access to the shared resource Hf dynamically. Alternatively we can use
a let-declaration to specify an ordering statically. The circuit corresponding to
let x=f(4) in x+f(5) does not require dynamic arbitration; we have specified
a static order of access to Hf. Note that program transformation can be used to
explore static vs. dynamic scheduling tradeoffs.

Register Placement: In our näıve translation to hardware (previous section)
we noted that a caller latches the result of a call into a register. We call such
registers permanising registers since they are required to keep the result of a call
to Hf permanent even if the value on Hf ’s output port subsequently changes
(e.g. due to another caller accessing shared resource Hf ). However, in many cases
we can eliminate permanising registers: if we can infer that the result of a call to
function f is guaranteed to remain valid (i.e. if no-one else can invoke f whilst
the result of the call is required) then the register can be removed [23].

Cycle Counting: Consider translating the following SAFL program into syn-
chronous hardware:

fun f(x) = g(h(x+1), h(k(x+2)))

Note that we can remove the arbiter for h if we can infer that the execution of
k always requires more cycles than the execution of h.

Zero Cycle Functions In the previous section we stated that it is the duty
of a function to latch its arguments (this corresponds to callee-save in software
terms). However, latching arguments necessarily takes time and area which, in
some cases, may be considered unacceptable. For example, if we have a func-
tion representing a shared combinatorial multiplier (which takes a single cycle
to compute its result), the overhead of latching the arguments (another cycle)
doubles the latency.



The current implementation of the SAFL compiler [23] allows a user to spec-
ify, via pragma, certain function definitions as caller-save—i.e. it is then the duty
of the caller to keep the arguments valid throughout the duration of the call.
An extended register-placement analysis ensures that this obligation is kept, by
adding (where necessary) permanising registers for such arguments at the call
site. In some circumstances3, this allows us to eliminate a resource’s argument
registers completely facilitating fine-grained, low-latency sharing of resources
such as multipliers, adders etc.

There are a number of subtleties here. For example, consider a function f

which adopts a caller-save convention and does not contain registers to latch its
arguments. Note that f may return its result in the same cycle as it was called.
Let us now define a function g as follows:

fun g(x) = f(f(x))

We have to be careful that the translation of g does not create a combinatorial
loop by connecting f’s output directly back into its input. In cases such as
this barriers are inserted to ensure that circuit-level loops always pass through
synchronous delay elements (i.e. registers or flip-flops).

2.4 Translation to Asynchronous Hardware

Although this has not been implemented yet, note that the design philosophy
outlined in Section 2.2 made extensive use of request/acknowledge signals. Our
current synchronous compiler models control events as 1-cycle pulses. With the
change to edge events (either 2-phase or 4-phase signalling) and the removal of
the global clock the design becomes asynchronous. The implementation of an
asynchronous SAFL compiler is the topic of future work.

Note that the first two optimisations presented in the previous section (re-
moval of arbiters and permanising registers) remain applicable in the asyn-
chronous case since they are based on the causal-dependencies inherent in a
program itself (e.g. when evaluating f(g(x)), the call to f cannot be executed
until that to g has terminated). Although we cannot use the “cycle counting”
optimisation as it stands, detailed feedback from model simulations incorporat-
ing layout delays may be enough to enable a similar type of optimisation in the
asynchronous case.

2.5 Globally Asynchronous Locally Synchronous (GALS) Hardware

One recent development has been that of Globally Asynchronous Locally Syn-
chronous (GALS) techniques where a number of separately clocked synchronous
subsystems are connected via an asynchronous communication architecture. The
GALS methodology is attractive as it offers a potential compromise between (i)
the difficulty of distributing a fast clock in large synchronous systems; and (ii)

3 Note that if the function is tail-recursive we cannot eliminate its argument registers
since they are used as workspace during evaluation.



the seeming area-time overhead of fully-asynchronous circuits. In a GALS circuit,
various functional units are associated with different clock domains. Hardware
to interface separate clock-domains is inserted at domain boundaries.

Our initial investigations of using SAFL for this approach have been very
promising: clock domain information can be an annotation to a function defini-
tion; the SAFL compiler can then synthesise change-of-clock-domain interfaces
exactly where needed.

3 Transformations in SAFL

As a result of our initial investigations, we believe that source-to-source trans-
formation of SAFL is a powerful technique for exploring the design space. In
particular:

– The functional properties of SAFL allow equational reasoning and hence
make a wide range of transformations applicable (as we do not have to worry
about side effects).

– The resource-aware properties of SAFL give fold/unfold transformations pre-
cise meaning at the design-level (e.g. we know that duplicating a function
definition in the source is guaranteed to duplicate the corresponding resource
in the generated circuit).

Although we have not yet built the transformer tool, we envisage it being
driven with a GUI interface. There is also scope for semi-automatic exploration
(cf. theorem proving), including perhaps hill-climbing.

In this section we give examples of a few of the transformations we have ex-
perimented with. We start with a very simple example, using fold/unfold trans-
formations [3] to express resource duplication/sharing and unrolling of recursive
definitions. Then a more complicated transformation is presented which allows
one to collapse a number of function definitions into a single function providing
their combined functionality. Finally we briefly outline a much larger, global
transformation which allows one to investigate hardware/software co-design.

We have observed that the fold/unfold transformation is useful for trading
area against time. As an example of this consider:

fun f x = ...

fun main(x,y) = g(f(x),f(y))

The two calls to f are serialised by mutual exclusion before g is called. Now use
fold/unfold to duplicate f as f’, replacing the second call to f with one to f’.
This can be done using an unfold, a definition rule and a fold yielding

fun f x = ...

fun f’ x = ...

fun main(x,y) = g(f(x),f’(y))



The second program has more area than the original (by the size of f) but runs
more quickly because the calls to f(x) and f’(y) execute in parallel.

Note that fold/unfold allows us to do more than resource/duplication shar-
ing tradeoffs; folding/unfolding recursive function calls before compiling to syn-
chronous hardware corresponds to trading the amount of work done per clock
cycle against clock speed. For example, consider the following specification of a
shift-add multiplier:

fun mult(x, y, acc) =

if (x=0 or y=0) then acc

else mult(x<<1, y>>1, if y[0:0] then acc+x else acc)

These 3 lines of SAFL produce over 150 lines of RTL Verilog. Synthesising a 16-
bit version of mult, using Mentor Graphics’ Leonardo tool, yields 1146 2-input
equivalent gates. We can mechanically transform mult into:

fun mult(x, y, acc) =

if (x=0 or y=0) then acc

else let (x’,y’,acc’) = (x<<1, y>>1,

if y[0:0] then acc+x else acc) in

if (x’=0 or y’=0) then acc’

else mult(x’<<1, y’>>1, if y’[0:0] then acc’+x’ else acc’)

which uses almost twice as much area and takes half as many clock cycles.
Another transformation we have found useful in practice is a form of loop

collapsing. Consider a recursive main loop (for example a CPU) which may
invoke one or more loops in certain cases (for example a multi-step division
operation):

fun f(x,y) = if x=0 then y else f(x-1, y’)

fun main(a,b,c) = if a=0 then b

else if ... then main(a’, f(k,b), c’)

else main(a’,b’,c’)

Loop collapsing converts the two nested while-loops into a single loop which
tests a flag each iteration to determine whether the outer, or an inner, loop
body is to be executed. This test is almost free in hardware terms:

main(inner,x,a,b,c) =

if inner then (* an f() iteration *)

if x=0 then main(0,x,a,b,c) (* exit f() *)

else main(1,x-1,a,y’,c) (* another iteration *)

else

if a=0 then b

else if ... then main(1,k,a’,b, c’) (* start f() *)

else main(0,x,a’,b’,c’) (* normal main step *)

This optimisation is useful because it allows us to collapse a number of function
definitions, (f1, . . . , fn), into a single definition, F . At the hardware-level each



function-block has a certain overhead associated with it (logic to remember who
called it, latches to store arguments etc.—see Section 2). Hence this transfor-
mation allows us to save area by reducing the number of function-blocks in the
final circuit. Note that the reduction in area comes at the cost of an increase in
time: whereas previously f1, . . . , fn could be invoked in parallel, now only one
invocation of F can be active at once.

Now consider applying this transformation to definitions (f1, . . . , fn) which
enjoy some degree of commonality. Once we have combined these definitions into
a single definition, F , we can save area further by applying a form of Common
Sub-expression Elimination within the body of F . This amounts to exploiting
let declarations to compute an expression once and read it many times (e.g.
f(x)+f(x) would be transformed into let y=f(x) in y+y.)

Despite having a significant impact on the generated hardware, the trans-
formations presented so far have been relatively simple. We have investigated
more complicated transformations for exploring hardware/software co-design.
Our method takes a SAFL specification, and a user-specified partition into hard-
ware and software parts, and generates a specialised architecture (consisting of a
network of heterogenous processors) to execute the software part. The basic idea
involves representing processors and instruction memories (containing software)
in SAFL itself and using a software compiler from SAFL to generate the code
contained in the instruction memories. The details are beyond the scope of this
paper; we refer the reader to [20] for more information.

4 Pipelines and Superscalar Expression in SAFL

As an example of how transformations work, consider the simple processor, re-
sembling DLX [7] or MIPS, given in Fig. 1 (we have taken the liberty of removing
most type/width information to concentrate on essentials and also omitted ‘in’
when it occurs before another ‘let’). The processor has seven representative
instructions, defined by enumeration

enum { OPhalt, OPj, OPbz, OPst, OPld, OPadd, OPxor };

and has two instruction formats (reg-reg-imm) and (reg-reg-reg) determined by a
mode bit m. The processor is externally invoked by a call to cpu providing initial
values of pc and registers; it returns the value in register zero when the OPhalt

instruction is executed. There are two memories: imem which could be specified
by a simple SAFL function expressing instruction ROM and dmem representing
data RAM. The function dmem cannot be expressed directly in SAFL (although
it can in SAFL+, our extended version [25]). It is declared by a native language
interface and defined directly in Verilog: calls to dmem are serialised (just like
calls to user-functions); if they could be concurrent a warning is generated. In
this case it is clear that at most one call to dmem occurs per cycle of cpu. The
intended behaviour of dmem(a,d,w) is to read from location a if w=0 and to write
value d to location a if w=1. In the latter case the value of d is also returned. The



fun cpu(pc, regs) =

(let I = imem(pc)

let (op,m,rd,ra) = (I[31:27], I[26], I[21:25], I[16:20])

let (rb,imm) = (I[0:4], sext32(I[0:15]))

let A = regs[ra]

let B = m==0 ? imm : regs[rb]

let C = alu(op, A, B)

let D = case op of OPld => dmem(C,0,0)

| OPst => dmem(C,regs[rd],1)

| _ => C

let regs’ = case op of OPld => regs[D @ rd]

| OPadd => regs[D @ rd]

| OPxor => regs[D @ rd]

| _ => regs

let pc’ = case op of OPj => B

| OPbz => pc+4 + (A==0 ? imm : 0)

| _ => pc+4

in (op==OPhalt ? regs’[0] : cpu(pc’, regs’)));

Fig. 1. Simple processor

use of functional arrays for regs and regs’ is also to be noted: the definition
let regs’ = regs[v @ i] yields another array such that

regs’[i] = v

regs’[j] = regs[j] if j 6= i

This can be seen as shorthand: the array regs corresponds to a tuple of simple
variables, say (r0, r1, r2, r3)) and the value regs[i] is shorthand for the
expression

(i==0 ? r0 : (i==1 ? r1 : (i==2 ? r2 : r3)))

and the array value regs[v @ i] is shorthand for the expression

((i==0 ? v : r0), (i==1 ? v : r1), (i==2 ? v : r2), (i==3 ? v : r3)).

Note that the SAFL restrictions mean that no dynamic storage is required, even
when using array values as first-class objects. There is one advantage of the array
notation in that it allows alternative implementation techniques; here we may
infer that regs and regs’ are never both live and share their storage as a single
register file (when the conditionals above become multiplexors) but equally we
may choose to use a rather less physically localised implementation, for example
the rotary pipelines of Moore at al. [16].

Now let us turn to performance. We start by making three assumptions: first,
that both imem and dmem take one clock tick; second, that the compiler also
inserts a clocked register file at the head of cpu to handle the recursive loop; and



that the alu() function is implemented without clocked registers which we will
here count as just one delta4 delay. We can now count clock and delta cycles,
here just in terms of high-level SAFL data flow. Writing n.m to mean n cycles
and m delta cycles (relative to an external or recursive call to cpu being the 0.0
event), we can derive:

variable cycle count
entry to body of cpu() 0.0

I 1.0
(op, m, rd, ra), (rb, imm) 1.1

A, B 1.2
C 1.3
D 2.0 or 1.45

regs’ 2.1 or 1.5
pc’ 1.3

recursive call to cpu() 2.2 or 1.6
next entry to body of cpu() 3.0 or 2.0

Note that we have counted SAFL-level data dependencies instead of true gate-
delays; this is entirely analogous to counting the number of high-level statements
in C to execute program speed instead of looking at the assembler output of a
C compiler to count the exact number of instructions. The argument is that
justifying many optimisations only needs this approximate count. A tool could
easily annotate declarations with this information.

The result of this is that we have built a CPU which takes three clock cycles
per memory reference instruction, two clock cycles for other instructions and with
a critical path of length 6 delta cycles (which acts as a limit on the maximum
clock rate). Actually, by a simple adjustment to the compiler, we could arrange
that that cpu() is clocked at the same time as imem() and therefore achieve a
one- or two-cycle instruction rate.

Now suppose we wish to make our simple CPU go faster; two textbook meth-
ods are adding a pipeline or some form of superscalar processing. We wish to
reduce the number of clock cycles per instruction cycle and also to reduce the
critical path length to increase the clock frequency.

The simplest form of pipelining occurs when we wish to enable the dmem

and imem accesses to happen concurrently. The problem in the above design is
that the memory address argument to dmem is only produced from the imem

result. Hence we transform cpu() to cpu1a() as shown in Fig. 2; the suffix ‘1’
on an identifier refers to a value which was logically produced one instruction
ago. This transformation is always valid (as a transformation on a recursive
program schema and thus computes the same SAFL function) but unfortunately
the conditional test for OPhalt requires the calls to imem and dmem still to be
serialised. To produce cpu2(), as shown in Fig. 3, we need to make a conscious
adjustment to pre-fetch the instruction after the OPhalt by interchanging the

4 A delta cycle corresponds to a gate-propagation delay rather than a clock delay.
5 Depending on which path is taken.



fun cpu1a(pc, op1, regs1, C1, rd1) =

(let D = case op1 of OPld => dmem(C1,0,0)

| OPst => dmem(C1,regs1[rd1],1)

| _ => C1

let regs = case op1 of OPld => regs1[D @ rd1]

| OPadd => regs1[D @ rd1]

| OPxor => regs1[D @ rd1]

| _ => regs1

in (op1==OPhalt ? regs[0] : (* note this line *)

let I = imem(pc) (* note this line *)

let (op,m,rd,ra) = (I[31:27], I[26], I[21:25], I[16:20])

let (rb,imm) = (I[0:4], sext32(I[0:15]))

let A = regs[ra]

let B = m==0 ? imm : regs[rb]

let C = alu(op, A, B)

let pc’ = case op of OPj => B

| OPbz => pc+4 + (A==0 ? imm : 0)

| _ => pc+4

in cpu1a(pc’, op, regs, C, rd)));

Fig. 2. CPU after simple transformation

fun cpu2(pc, op1, regs1, C1, rd1) =

(let D = case op1 of OPld => dmem(C1,0,0)

| OPst => dmem(C1,regs1[rd1],1)

| _ => C1

let regs = case op1 of OPld => regs1[D @ rd1]

| OPadd => regs1[D @ rd1]

| OPxor => regs1[D @ rd1]

| _ => regs1

let I = imem(pc) (* note this line *)

in (op1==OPhalt ? regs[0] : (* note this line *)

let (op,m,rd,ra) = (I[31:27], I[26], I[21:25], I[16:20])

let (rb,imm) = (I[0:4], sext32(I[0:15]))

let A = regs[ra]

let B = m==0 ? imm : regs[rb]

let C = alu(op, A, B)

let pc’ = case op of OPj => B

| OPbz => pc+4 + (A==0 ? imm : 0)

| _ => pc+4

in cpu2(pc’, op, regs, C, rd)));

Fig. 3. CPU with pipelined memory access



if-then-else and the imem() call. This is now in contrast to cpu() and cpu1a()

where instructions are only fetched when needed to execute. Now letting NOP

stand for (OPbz<<27)+0 we see that the call cpu(pc,regs) is equivalent to the
call cpu2(pc,NOP,regs,0,0), save that the latter requires only one clock for
every instruction and that the instruction after an OPhalt instruction will now
be fetched (but not executed). Note that the calls to dmem and imem in cpu2()

are now concurrent and hence will happen on the same clock. It is pleasant to see
such subtleties expressible in the high-level source instead of as hidden details.

We can now turn to exploring further the memory interface; in particular
suppose we wish to retain separate imem (ROM) and dmem (RAM), each acces-
sible in a single cycle, but wish both instruction- and data-fetches to occur from
either source. This is form of a memory controller. In order to avoid concurrent
access on every memory access instruction we wish it to be dual-ported, thus it
will take two addresses and return two data values. When two concurrent ac-
cesses occur, either to dmem or to imem (e.g. because a OPld in one instruction
refers to the memory bank which contains the following instruction), a stall will
occur. A good memory controller will cause a stall only in this circumstance.
Fig. 4 shows how this can be implemented in SAFL; memctrl is dual ported

fun memctrl(pc,a,d,r,w) =

(let iv = is_dmem(pc) ? dmem(pc,0,0) : imem(pc)

let dv = (r or w) ? (is_dmem(a) ? dmem(a,d,w) : imem(a)) : a

in (iv,dv))

fun cpu3(pc, op0, regs0, C0, rd0) =

(let (I,D) = memctrl(pc, C0, regs[rd0], op==OPld, op==OPst)

in ...)

Fig. 4. CPU with memory controller

(two arguments and results) each memory access is directed (according to the,
simple and presumably one delta cycle, function is_dmem) to the appropriate
form of memory. The SAFL compiler detects the possible concurrent access to
imem (and to dmem) and protects them both with an arbiter. The effect is as
desired, a stall occurs only when the two accesses are to the same memory bank.

Another useful transformation is to reduce the length of the critical path in
order to increase the clock rate. In cpu2 this is likely to be the path through the
alu function. Fig. 5 shows how the access to alu can be pipelined along with
memory access to create a three-stage pipeline; here the the suffix ‘1’ (resp. ‘2’)
on an identifier refers to a value which was logically produced one (resp. two)
instructions ago. The processor cpu4 works by concurrently fetching from imem

the current instruction, doing the alu for the previous instruction op1 and doing
memory access (and register write-back) for the second previous instruction op2.
It is not quite equivalent to cpu2 in that it exposes a delay slot; the result of an
ALU or load instruction is not written back to regs until two instructions later,



fun cpu4(pc, op1, A1, B1, rd1, op2, regs2, C2, rd2) =

(let C = alu(op1, A1, B1)

let D = case op2 of OPld => dmem(C2,0,0)

| OPst => dmem(C2,regs2[rd2],1)

| _ => C2

let regs = case op2 of OPld => regs2[D @ rd2]

| OPadd => regs2[D @ rd2]

| OPxor => regs2[D @ rd2]

| _ => regs2

let I = imem(pc)

in (op2==OPhalt ? regs[0] :

let (op,m,rd,ra) = (I[31:27], I[26], I[21:25], I[16:20])

let (rb,imm) = (I[0:4], sext32(I[0:15]))

(* forwarding (a.k.a. by-passing) would go here *)

let A = regs[ra]

let B = m==0 ? imm : regs[rb]

let pc’ = case op of OPj => B

| OPbz => pc+4 + (A==0 ? imm : 0)

| _ => pc+4

in cpu4(pc’, op, A, B, rd, op1, regs, C, rd1)));

Fig. 5. CPU with pipelined ALU and memory access

and thus the following instruction will still ‘see’ the old value. This is typically
avoided by adding forwarding or by-passing hardware. In our terms this means
comparing rd1 with ra and rb where indicated and using C instead of the value
from regs on equality.

Returning to the original cpu() form for simplicity of expression, we can sim-
ply convert it to the superscalar processor shown in Fig. 6; since we have dropped
the pipeline we just use the ‘1’ and ‘2’ suffices for the ‘left’ and ‘right’ instruction
of a pair. As a processor this leaves quite a few things to be desired—for example
while the left (I1) and right (I2) instructions are serialised if I2 reads from a
register written by I1, there is no such interlock on memory access for concurrent
writes. Similarly there is a branch delay slot in that I2 is carried out even if I1 is a
taken-branch. Further, to gain actual performance improvement one would need
a single double-width imem64 function instead of the two imem accesses; perhaps
one can manage with a single-width dmem and require the assembly code to be
scheduled to pair memory access and non-memory-access instructions. However,
all structural hazards will be removed by the SAFL compiler by its insertion of
arbiters around concurrently accessible resources. The SAFL form explicitly lays
out various options in the design space. For example, as presented in Fig. 6 a
single ALU is shared between the two separate instructions; duplicating this is
clearly a good idea; however, less frequently used components (perhaps a multi-
plier called by the ALU) could be provided in a single form accessed by arbiter.
A stall then only happens when the I1 and I2 instructions both use such a



fun cpu5(pc, regs) =

(let (I1,I2) = (imem(pc), imem(pc+4))

let (op1,m1,rd1,ra1) = (I1[31:27], I1[26], I1[21:25], I1[16:20])

let (rb1,imm1) = (I1[0:4], sext32(I1[0:15]))

let (op2,m2,rd2,ra2) = (I2[31:27], I2[26], I2[21:25], I2[16:20])

let (rb2,imm2) = (I2[0:4], sext32(I2[0:15]))

if ((op1 == OPld or op1 == OPadd or op1 == OPxor) and

(rd1 == ra2 or (m1==1 and rd1 == rb2)

or (op2 == OPst and rd1 == rd2))) then

...

<I2 reads from a register written by I1 -- serialise>

...

else

let (A1,A2) = (regs[ra1], regs[ra2])

let (B1,B2) = ((m1==0 ? imm1 : regs[rb1]),

(m2==0 ? imm2 : regs[rb2]))

let (C1,C2) = (alu(op1, A1, B1), alu(op2, A2, B2))

let D1 = case op1 of OPld => dmem(C1,0,0)

| OPst => dmem(C1,regs[rd1],1)

| _ => C1

let D2 = case op2 of OPld => dmem(C2,0,0)

| OPst => dmem(C2,regs[rd2],1)

| _ => C2

let regs’ = case op1 of OPld => regs[D1 @ rd1]

| OPadd => regs[D1 @ rd1]

| OPxor => regs[D1 @ rd1]

| _ => regs

let regs’’ = case op2 of OPld => regs’[D2 @ rd2]

| OPadd => regs’[D2 @ rd2]

| OPxor => regs’[D2 @ rd2]

| _ => regs’

let pc’ = case op1 of OPj => B1

| OPbz => pc+8 + (A1==0 ? imm1 : 0)

| _ =>

case op of OPj => B2

| OPbz => pc+8 + (A2==0 ? imm2 : 0)

| _ => pc+8

in (op1==OPhalt ? regs’[0]

op2==OPhalt ? regs’’[0] : cpu5(pc’, regs’’)));

Fig. 6. Simple superscalar processor



resource; we might choose to accept this point on the speed/cost spectrum and
again simply requiring compilers to schedule code to avoid such stalls.

5 Compile-Time and Run-Time Types: Unifying SAFL
and Lava

Based on the observation that Lava uses Haskell recursion to specify a circuit
on the structural level (such as repetitive or nested circuits) whereas SAFL uses
recursion to specify behavioural aspects, we now turn to a two-level language
which can express both concepts in a single framework.

The idea is analogous to the distinction between static (compile-time) and
(dynamic) run-time data in partial evaluation [8]; we consider partial evaluation
for an extended SAFL in Section 5.1.

SAFL’s type system (not explicitly spelt out previously, although always
present in the implementation) is very simple, being of the form where values
each have an associated size (n bits say) and therefore are ascribed type bitn.
Our implementation of SAFL currently requires that each constant, function
argument and function result6 is given an explicit width type in the style of
the simply typed lambda-calculus. Function types, corresponding to hardware
blocks, are then of type bitm 7→ bitn. As in ML, functions can always be consid-
ered to have a single input and a single output as above; the addition of product
forms to SAFL is then all that is required to model multiple arguments, results
and let definitions. These can be seen as a family of bundling and unbundling
operations:

joinij : bit i ∗ bitj 7→ bit i+j (1)

split ij : bit i+j 7→ bit i ∗ bitj . (2)

Similarly the family of sum forms bit i + bitj can be represented as as type
bitmax(i,j)+1 in the usual manner.

SAFL functions are restricted to first order; allowing curried functions whose
arguments and result are simple values poses few problems as the closure is of
known size to the caller, but the gain in expressiveness does not seem worth
the implementation effort. However allowing function values as arguments and
results breaks the static allocatability requirement (counter-examples can be
constructed based of the idea that any program can be expressed in contin-
uation form using only tail recursion, see [19] for more details). Hence, given
the syntactical separation between values and functions, the SAFL type system
consists essentially of:

(values) bitn

(functions) bitm 7→ bitn.

Now let us consider the framework used in Lava. There, unwrapping the
Haskell class treatment, circuits are essentially represented as graphs encoded

6 Function results only need to be typed to ensure that all non-terminating recursive
functions have a well-defined result type.



as a datatype, say circuit . Thus, disregarding polymorphism at the moment and
including list(t) as representative of user-defined datatypes, the type system is
essentially

τ ::= int | circuit | τ → τ | τ × τ | list(τ)

Circuit composition operations correspond to functions whose arguments or re-
sults are functions.

We can now combine these type systems as follows:

σ ::= bitn | bitm 7→ bitn

τ ::= int | σ | τ → τ | τ × τ | list(τ).

The interesting effect is that this type system has now become a two-level type
system (first studied by Nielson and Nielson [21]) which has two function con-
structors: ‘→’ representing compile-time, or structural, composition (cf. Verilog
module instantiation) and ‘7→’ representing run-time, or behavioural, computa-
tion (i.e. data movement in silicon).

Let us therefore invent a language, 2-SAFL, based on this type system, which:
allows use of general recursion to define compile-time functions (of types τ → τ)
representing the structural design; and run-time functions (of types bitm 7→ bitn

and respecting the SAFL static allocatability rules) representing the behavioural
core.7 At its most primitive (using a λ~x.e form to give function values instead
of having separate fun declarations) it has expressions, e, given by:

e ::= x | c | e e′

| λc ~x.e | λr ~x.e

| if c e then e else e | if r e then e else e

| letc ~x = e in e | letr ~x = e in e

Here the alternative left-hand-side forms λc, letc etc., correspond to compile-time
constructions and those on the right λr, letr etc., correspond to run-time, i.e.
SAFL, ones. We have constants (including fix to express recursion) and variables
of both forms and an overloaded application on both forms. Valid programs have
a set of well-formedness rules which express static allocatability restrictions on
the SAFL λr~x.e form together with type and level constraints on the σ and τ as
in [21]; for example that compile-time computation (e.g. application of a value
defined by λc) cannot occur in the body of a λr~x.e form. In examples below we
revert to the use of the funcf(x) = e (and funr) form instead of the λc~x.e (and
λr) used above.

This provides various interesting features, which we have not investigated in
detail. For example, it can be used to define SAFL functions which differ only
in type:

7 There is a little surprise here: the structural level is outside the the behavioural level.
This is consonant with Lava in which compile-time, i.e. Haskell, functions allow one
to manipulate the primitive hardware cells which move values at run-time; all we
have done is to provide a richer, behavioural, run-time level in the form of SAFL.



func multiplier(n) =

local funr f(x:bit(n), y:bit(n), acc:bit(n)) : bit(n) =

if y=0 then acc

else f(x<<1, y>>1, if y[0:0] then acc+x else acc)

in f

end;

funr m1 = multiplier(16);

funr m2 = m1;

funr m3 = multiplier(16);

funr m4 = multiplier(24);

funr main(...) = ... m1 ... m2 ... m3 ... m4 ...

Here m1, m2 and m3 represent 16-bit multipliers and m4 a 24-bit multiplier. Note
that resource-awareness is manifested here by m1 and m2 being synonyms for
the same multiplier while m3 is a distinct multiplier (as is m4, but this is clear
because it differs in width). The type of multiplier is then

(n ∈ int) → (bitn ∗ bitn ∗ bitn 7→ bitn).

Similarly, consider the way in which Lava circuits can be wired together by
means of functions which operate on values of type circuit. We can capture this
notion by means of a higher-order function taking arguments in the form of
SAFL functions. In SAFL we can already define functional units f and g and
then wire them together to make h as follows:

funr f(x,y) = e1;

funr g(z) = e2;

funr h(x,y) = f(g(x+1),g(y+1));

The 2-SAFL language now allows, as in Lava, the particular combinator here
used to define h to be abstracted and expressed as a higher-order value (suitable
for re-use elsewhere in the system where similar combinators are required):

funr f(x,y) = e1;

funr g(z) = e2;

func combine(p,q,a) =

local funr t(x,y) = p(g(x+1),q(y+a)) in t end;

funr h = combine(f,g,1);

This example, although contrived, does show how compile-time functions such
as combine can be used as in Lava. Supposing f has type (bitm ∗ bitn 7→ bitr)
and g has type (bit i 7→ bitm), then the type of combine is:

(bitm ∗ bitn 7→ bitr) × (bitj 7→ bitn) × int → (bit i ∗ bitj 7→ bitr).

We could summarise the 2-SAFL extension as follows: in the Lava view, the
only run-time computations arise from built-in primitives (AND, OR, flip-flops)
whereas 2-SAFL has SAFL function definitions as primitive; iterative structure



in Lava is represented via re-entrant graphs whereas in 2-SAFL it is represented
via SAFL recursion.

We have not properly investigated type inference on this system—in many
ways the compile-time types inherit from Lava, including widths, but the avail-
ability of SAFL functions at the run-time level instead of just hardware primi-
tives may pose interesting questions of type inference. (For example, as above,
run-time types, e.g. bitn, can depend on compile-time values, e.g. n.) Instead of
addressing this issue, we wish to turn attention to the possibility of exploring
transformations which interchange the two forms of function (compile-time and
run-time), i.e. partial evaluation.

5.1 Partial Evaluation

Although there is only space for a preliminary discussion of these ideas here,
the 2-SAFL language provides a useful base for partial evaluation for hardware.
In traditional partial evaluation [8], sometimes known as program specialisation,
a generic program taking n inputs is specialised, with k <n of its inputs being
known values, to result in a specialised program taking n−k inputs. The resultant
program is generally more efficient that the original program. Few applications to
hardware seem to exist; McKay and Singh [13] consider the problem of run-time
specialisation of hardware implemented in FPGAs to increase speed.

Standard partial evaluation seems to fit in well with 2-SAFL; we show how
a SAFL program of say three inputs can be reduced to a more efficient program
of two arguments in the 2-SAFL framework. For example, consider a multi-cycle
multiply-and-add defined by

fun mult(x, y, acc) =

if y=0 then acc

else mult(x<<1, y>>1, if y[0:0] then acc+x else acc)

We can trivially convert this to a multiply-by-13-and-add by defining

fun mult13(x,acc) = mult(x,13,acc).

Indeed, if mult13 compiles into a zero-clock function (one which does not latch
its inputs) then a call mult13(x,a) will compile into hardware identical to that
of a call mult(x,13,a).

However, the two-level type system can be used to create a specialised version
of mult13. Writing mult first as

fun mult = λr(x, y, acc).

if y=0 then acc

else mult(x<<1, y>>1, if y[0:0] then acc+x else acc)

and then, curried on the two forms of λ, gives:

fun mult’ = λcy. λr(x, acc).

if y=0 then acc

else mult’(y>>1)(x<<1, if y[0:0] then acc+x else acc).



This last form is not a valid 2-SAFL program since it contains a compile-time
application mult’(y>>1) within a λr. However mult’(13) can be unfolded as:

fun mult13 = λr(x, acc). if 13=0 then acc

else mult6(x<<1, if 13[0:0] then acc+x else acc)

fun mult6 = λr(x, acc). if 6=0 then acc

else mult3(x<<1, if 6[0:0] then acc+x else acc)

fun mult3 = λr(x, acc). if 3=0 then acc

else mult1(x<<1, if 3[0:0] then acc+x else acc)

fun mult1 = λr(x, acc). if 1=0 then acc

else mult0(x<<1, if 1[0:0] then acc+x else acc)

fun mult0 = λr(x, acc). if 0=0 then acc

else mult0(x<<1, if 0[0:0] then acc+x else acc).

which simplies to:

fun mult13 = λr(x, acc). mult6(x<<1, acc+x)

fun mult6 = λr(x, acc). mult3(x<<1, acc)

fun mult3 = λr(x, acc). mult1(x<<1, acc+x)

fun mult1 = λr(x, acc). mult0(x<<1, acc+x)

fun mult0 = λr(x, acc). acc

and hence (by unfolding, or just by compiling the used-once functions mul6 to
mul0 into zero-clock functions) to:

fun mult13 = λr(x, acc).

acc + x + ((x<<1)<<1) + (((x<<1)<<1)<<1)

or equivalently

funr mult13(x,acc) = acc + x + ((x<<1)<<1) + (((x<<1)<<1)<<1)

which now again adheres to the SAFL rules.
In this example at least, once the idea of using y as a static (λc) parameter

had been mooted, the manipulation was forced by the type system.
Finally, let us observe that partial evaluation techniques applied to processors

can produce interesting effects. A sequence of frequently occurring software in-
structions for a processor can be specialised into a single new instruction and the
hardware necessary to execute this instruction (hopefully faster) automatically
generated.

6 Conclusions and Further Work

We have found SAFL to be surprisingly powerful at describing hardware at
a high-level in spite of its meagre features. In particular it seems to be very
effective at describing processor design and transformations to adjust their area-
time consumption as discussed in Section 4. An important aspect of this is
resource-awareness. We can trust the SAFL compiler to optimise code without



altering its gross structure; hence transformations on hardware structure can be
seen as SAFL source-to-source transformations.

Another aspect of the same coin is that we would expect to be able to ver-
ify mechanically the transformations we make, and indeed to hope that semi-
automatic tools can help the user to choose an area-time tradeoff.

At the moment SAFL is a self-contained language which compiles to Verilog.
However we could also embed SAFL within VHDL or Verilog as a higher-level
behavioural form—the main problem would be restricting access to lower-level
details so that SAFL compiler optimisations and SAFL transformations which
we have discussed remain valid.

The aspect about which we feel most exposed is that the pure functional
call-and-wait-for-result interface provided by SAFL is sometimes too restrictive.
Recent work [25] on SAFL+ suggests one possible way forward.
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